
 1

Combining Machine Learning with Evolutionary Computation: 

Recent Results on LEM 

 

Guido Cervone 

Ryszard S. Michalski* 

Kenneth K. Kaufman 

Liviu A. Panait 

 

Machine Learning and Inference Laboratory 

George Mason University 

Fairfax, VA, 22030 

*Also with the Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland 

 

Abstract 

The Learnable Evolution Model (LEM), first presented at the Fourth International Workshop on 

Multistrategy Learning, employs machine learing to guide evolutionary computation . Specifically, 

LEM integrates two modes of operation: Machine Learning mode, which employs a machine 

learning algorithm, and Darwinian Evolution mode, which employs a conventional evolutionary 

algorithm. The central new idea of LEM is that in machine lear ning mode, new individuals are 

“genetically engineered” by a repeated process of hypothesis formation and instantiation, rather 

than created by random operators of mutation and/or recombination, as in Darwinian -type 

evolutionary algorithms. At each stage o f evoluation, hypotheses are induced by a machine 

learning system from examples of high and low performance individuals. New individuals are 

created by instantiating the hypotheses in different ways. In recent experiments concerned with 

complex function op timization problems, LEM has signif icantly outperformed selected 

evolutionary computation a lgorithms, sometimes achieving speed -ups of the evolutionary process 

by two or more orders of magnitude (in terms of the number of generations). In another recent 

application involving a problem of optimizing heat exchangers, LEM produced designs equal or 

superior to best expert designs. The recent results have confirmed earlier findings that LEM is able 

to significantly speed-up evolutionary processes (in terms of the number of generations) for certain 

problems. Further research is needed to determine classes of problems for which LEM is most 

advantagious. 

. 

1 Introduction 

The idea that machine learning can be used to directly guide evolutionary computation was first presented at 

the Fourth International Workshop on Multistrategy Learning (Michalski, 1998).  This presentation 

described the Learnable Evolution Model (LEM), which integrates a machine learning algorithm with a 

conventional evolutionary algorithm, and repo rted initial results from LEM's application to selected 

function optimization problems. Presented results were very promising but tentative. They were obtained 

using LEM1, a rudimentary implementation of the proposed method, and the experiments were perfor med 

only on a few problems.  
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Subsequently, a more advanced implementation, LEM2, was developed, and many more experiments were 

performed with it (Cervone, 1999). The original methodology was also substantially extended and improved 

(Michalski, 2000).  One of the important improvements is the development of the adaptive anchoring 

discretization method, ANCHOR, for handling continuous variables (Michalski and Cervone, 2000). This 

paper presents recent results from the application of LEM2 to a range of functio n optimization problems 

and to a problem of designing optimal heat exchangers.  To provide the reader with a sufficient background  

information, the next section briefly reviews the current version of the Learnable Evolution Model. 

2 A Brief Overview of the Learnable Evolution Model 

The Learnable Evolution Model (LEM) represents a fundamentally different approach to evolutionary 

processes than Darwinian -type evolutionary algorithms.  In Darwinian -type evolutionary algorithms, new 

individuals are generated b y processes of mutation and/or recombination. These are semi -blind operators 

that take into consideration neither the experience of individuals in a given population (like in Lamarckian 

type of evolution), nor the past history of evolution. In LEM, the evo lution is guided by hypotheses derived 

from the current and, optionally also past generations of individuals. These hypotheses identify the areas of 

the search space (landscape) that most likely contain the global optimum (or optima).  The machine learning 

program is used in LEM either as the sole engine of evolutionary change (the uniLEM version), or in 

combination with the Darwinian-type of evolution process (the duoLEM version). 

The duoLEM version integrates two modes of operation: Machine Learning mode and Darwinian Evolution 

mode. The Darwinian Evolution mode implements a conventional evolutionary algorithm, which employs 

mutation and/or recombination operators to generate new individuals. The Machine Learning mode 

generates new individuals by a process of hypothesis generation and instantiation.  Specifically, at each step 

of evolution, it selects two groups of individuals from the current population: High -performing individuals 

(H-group), which score high on the fitness function, and Low -performance individuals (L -group), which 

score low on the fitness function. These groups are selected from the current population or from some 

combination of the currrent and past populations. These two groups are then supplied to a learning program 

that generates hypot heses distinguishing between the H -group and the L -group. New individuals are 

generated by instantiating the hypotheses in various ways. These new individuals compete with the existing 

individuals for the inclusion in the new population. 

In the duoLEM vers ion, LEM alternates between the two modes of operation, switching to another mode 

when a mode termination condition  is met (e.g., when there is an insufficient improvement of the fitness 

function after a certain number of populations). In the uniLEM versio n, the evolution process is guided 

solely by the machine learning program. When the mode termination condition is met, a StartOver 

operation is performed. In such an operation, system generates a new population randomly, or according to 

certain rules (Michalski, 2000).  
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Figure 1 presents a flowchart of uniLEM and duoLEM version of LEM. For a comprehensive description of 

the LEM methodology refer to (Michalski, 1998, Cervone, 1999, Michalski, 2000).  
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Adjust parameters

uniLEM version duoLEM version
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Adjust parameters

Startover Startover

Generate new individuals

via mutation and/or

crossover
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Generate new individuals

via hypotheses creation

and instantiation

 

Figure 1.  A flowchart of the uniLEM and duoLEM versions. 

Below is a brief description of the individual steps, with an indication of how they are implemented in the 

LEM2 system.  

StartOver:  This operator generates a new population randomly or according to cetain rules. In LEM2, a 

new population is generated randomly, with a proviso that a number of the best performing individuals from 

the past populations are added to the newly generated population (elitism). 

Select H -group and L -group:  This selection can be done in LEM2 using one of tw o methods: Fitness -

Based Selection (FBS), or Population -Based Selection (PBS). In FBS, the H -group (L-group) consists of 

individuals whose fitness is above the HFT% from the top value  (below the LFT% from the lowest value). 

In PBS, the H -group (L-group) consists of HPT% highest -fitness  (LPT% lowest -fitness) individuals in the 

population. Figure 2 illustrates these two selection methods and the parameters HFT (high fitness 

threshold), LFT (low fitness threshold), HPT (high population threshold), LPT (low population threshold).   
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Figure 2.  An example of the fitness profile function, and an illustration of  

parameters HFT, LFT, HPT, LPT would select the H and L groups. 

Select parents:  The selection of the parents is related to the Darwinian mode.  It sele cts representative 

individuals  (parents) from the current population that will be mutated and/or recombined. LEM2 

implements two types of mutation: deterministic and uniform.  In the first every individual in the population 

is selected, while in the latte r, every individual has the same chance of being selected, independently from 

its fitness. 

Generate new individuals via hypothesis creation and instantiation : The LEM methodology is not 

constrained to any particular learning algorithm, but can be used, in principle, with any concept learning 

method.  LEM2 employs AQ18 rule learning program that is highly suitable for LEM due to its various 

characteristics, such as the ability to learn rules with different levels of generality, the use of internal 

disjunction operator, and a powerful knowledge representation. 

Figures 3 and 4 show an example of the input and output from AQ18, respectively (after small editing).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AQ18 takes as intput the H -group and L -group, a specification of the types and  domains of the variables, 

plus, optionally, control parameters [see (Kaufman and Michalski, 2000) for a detailed explanation], and 

produces a set of attributional rules with annotations characterizing the rules. Each learned rule is a 
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Note: The values in the conditions of the rule 

above are symbols representing ranges of original 

values of these variables, not the original values. 

These ranges has been detemined in the process 

of adaptive anchoring quantization  (Michalski 

and Cervone, 2000).  

  

 v
Figure 4. AQ18 input.  w Figure 5. AQ18 output. 
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conjunction of condi tions that specify ranges of values an attribute may take (in the case when AQ18 runs 

without invoking constructive induction).  A rule is instantiated by selecting values satisfying rule 

conditions.  The learned rules are used to generate new individuals by randomizing variables within the 

ranges of values defined by the rule conditions. If a rule does not include some variable, it means that this 

variable was found irrelevant for distinguishing between the H -group and the L -group. Variables that are 

not i ncluded in the rule are instantiated by randomly choosing a value from their domain, or choosing a 

value that is present in a randomly selected individual from the current population.  

Generate new individuals via mutation and/or crossover : Individuals in the parent population are mutated 

and/or recombined.  Research on Darwinian -type evolutionary algorithms has investigated many different 

forms of mutation and recombination. 

Evaluate individuals :  For each new individual, its fitness is evaluated according  to a given fitness function 

or by some process, e.g., simulation.  In the latter case, this operation may be costly and time-consuming.  

Generate new population : This step involves creating a new population that combines individuals from the 

previous population with new individuals generated according to the rules learned.  Different methods can 

be used for this purpose. These methods can be divided into intergenerational and generational.  In the 

methods of the first group, both newly generated and previo us individuals compete for inclusion in the new 

population. In the methods of the second group, only newly generated individuals compete for the inclusion.   

Adjust Parameters:  LEM keeps statistics regarding the number of successful births, the change in the 

highest-so-far fitness score, and others. Using these statistics, it can adjust its behavior in the evolutionary 

process.  For example, it may find that at a given step generating more general or more specific rules may 

be more desirable, that paramete rs controlling the selection of H -group and L-group need to be changed, or 

that the mutation rate for the Darwinian evolutionary mode need to be adjusted. 

3 LEM Implementations: LEM2, LEM1, and ISHED1 

LEM2 is the newest general -purpose implementation of LE M, and represents a significant improvement 

over LEM1, the first, rudimentary implementation (Michalski and Zhang, 1999). LEM1, presented at 

MSL98, employs the AQ15c machine learning program in Machine Learning mode and GA1 and GA2, two 

simple evolutionary algorithms, in Darwinian evolution mode.  GA1 and GA2 use a deterministic selection 

mechanism and a real -value representation of the variables.  The main differences between the two are that 

GA1 generates new individuals only through a uniform Gaussian mu tation operator, while GA2 uses also a 

uniform crossover operator.  Continuous variables are discretized into a fixed number of values. LEM1 was 

applied to function optimization (Michalski and Zhang, 2000), and a problem in designing non-linear digital 

filters (Coletti et al. 1999). 
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LEM2 was programmed using EC++, a generic Evolutionary Computation Library (Cervone and Coletti, 

2000). In Machine Learning mode, it employs the AQ18 rule learning program (Kaufman and Michalski, 

2000a).  The main features or improvements introduced to LEM2 in relation to LEM1 include: 

A. A new method for discretizing continuous variables has been developed and implemented. The 

method, called Adaptive Anchoring Discretization, briefly ANCHOR (Michalski and Cervone, 2000) 

gradually and adaptively increases the resolution of continuous variables in the process of evolution.  

The method has drastically improved the efficiency of LEM in the case when individuals are 

described by continuous variables. 

B. New individuals are generated by instantiating multiple rules rather than only the strongest rule in the 

ruleset generated by the learning program. This allows the system to explore in parallel several 

subareas of the search space, which is important in the case of multi-modal landscapes.  

C. The number of new individuals generated from a single rule is not fixed, but is proportional to the 

rule fitness, defined as the sum of fitnesses of examples covered by the rule.  

D. In addition to the population -based method for selecting the H -group and L -group, LEM2 can also 

uses the fitness-based method.  

E. The cost of variables in adjusted dynamically in the evolution process.  Each time a variable is 

included in a ruleset generated by the learning program, its cost is increased. This way, the system 

gives preference to variables that were not included in the previously learned ruleset. This feature has 

proven to be useful in optimizing functions with very large numbers of variables. 

F. The uniLEM version has been implemented, that is, the evolution process repet itively executes only 

Machine Learning mode. There is no separate Darwinian Evolution mode.  

G. A simple version of the StartOver operation has been implemented for the uniLEM version. 

Specifically, when the fitness profile function is flat for a controlled n umber of generations, new 

individuals are created randomly and inserted into the current population. 

H. Parameters controlling the creation of H -group and L-group in each step of evolution, the population 

lookback and the description lookback, have been implemented  in LEM2 (Michalski, 2000).  

LEM2 was applied to a range of optimization problems, and its performance was compared to that of 

conventional Darwinian-type evolutionary algorithms (Cervone, 1999).  ISHED1  is an implementation of 

the LEM methodology t ailored toward a specific application domain, namely, to the design of heat 

exchanger systems. Specifically, it conducts an evolutionary optimization process to determine the best 

arrangement of the evaporator tubes in the heat exchanger of an air conditio ning system under given 

technical and environmental constraints (see Section 4.2). Special  structure modifying operators have been 

implemented that modify structures according to the expert domain knowledge. A detailed description of 

ISHED1 is in (Kaufman and Michalski, 2000).  
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4  Experiments 

This section presents selected results from testing and validating the LEM methodology using LEM2.   To 

maximize the objectivity of LEM2 testing, the results from conventional evolutionary algorithms on the 

same probl em, which were found in the literature or on the web, were compared with the corresponding 

results from LEM2.  

For problems for which we were unable to find such results in the literature or on the web, we applied a 

conventional evolutionary algorithm, ES, that we re-implemented in C++ from an existing version in C (that 

was obtained from Ken De Jong). ES uses a real-valued representation and deterministic selection (i.e., each 

parent is selected and then mutated a fixed number of times, defined by the brood parameter). The mutation 

is done according to the Gaussian distribution, in which the mean is the value being mutated and the 

standard deviation is a controllable parameter.  Each variable has 1/ L probability of being mutated, where L 

is the total number  of variables defining an individual.  The new individuals and their parents are sorted 

according to their fitness, and the popsize highest-fitness individuals are included in the next generation, 

where popsize is a fixed population size. 

For some of the problems, we found on the web results from the application of Parallel GA  (PGA). PGA is 

a standard genetic algorithm (that uses a binary -string representation, mutation and crossover operators,  

and fitness-proportional selection) that simultaneously maintains separate subpopulations of individuals (the 

number of subpopulations and their sizes are specified by user-provided parameters).      

4.1  Application to  Function Optimization 

This section presents a selection of results from the application of LEM2,  ES, and PGA (when a to three 

well-known function optimization problems, namely, the Rosenbrock function, the Rastrigin function and 

the Gaussian Quartic function.  

     Problem 1.  Find the minimum of R osenbrock function (Rosenbrock, 1960) in which the nu mber of 

arguments, n, is raised to 100, and each argument ranges between –5.12 and 5.12: 

This is a rather complex optimization problem because the function has a very narrow and sharp ridge and 

runs around a parabola, so the variables are interrelated (Figure 5).  
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Figure 5.  An inverted graph of a two-dimensional projection of the Rosenbrock function. 

 For comparison, the ES algorithm was also applied to the same problem. The results of this experiment are 

graphically presented in Figure 6.  Two different  population sizes were used, 100 and 150, for both LEM2 

and ES. Each experiment was repeated 10 times and the results  averaged. 
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Figure 6. Results from LEM2 and ES for the Rosenbrock function optimization. 

     In Figure 6, LEM a,b,c means that the method was LEM2, the population size was a, and HPT and LPT 

parameters were b and c, respectively.  ES a,b means that population size was a and mutation rate b. As 

shown in Figure 6, LEM2 was significantly less d ependent on the input parameters than ES, and also 

converged to the function minimum much faster. It is possible to notice that some of the LEM curves (e.g. 

5,6,7,8) show a long horizontal line, meaning that for several births the algorithm did not improve the 

global optimum, a nd then a steep vertical line.  This behavior is the result of the startover operator, which 

introduced new individuals in the population, therefore allowed LEM to discover those areas of the space 

most favorable to direct the evolution. 

     LEM2’s results were also compared with the best available results previously published for this function 

(CHC). These results concern the Rosenbrock function with a much smaller number of variables (only 2 and 
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4).  They are summarized in Table 1, which shows the number  of evaluations needed to come δ-close to the 

global optimum, and the relative speedups.  

     The value of δ-close specifies the  number of generations after which the relative distance from the 

solution to the target (global optimum) produced by an algori thm becomes smaller than δ. The speedup of 

algorithm A over B for a given δ, is defined as the ratio, expressed in percentage, of the number of births  

required by B to the number of births required by A to achieve the δ-close result.  

     In the case of t wo variables, the best result was achieved using the CHC+BLX algorithm (briefly, CHC) 

that required 4893 evaluations (Eschelman and Shaffer, 1993). In contrast, LEM2 found the global 

minimum using only 101 evaluations (a speedup of nearly 5000%).  

 

Rosenbrock function 

minimization 2 vars 

             δ=0 

LEM2 (uniLEM)              101 

CHC            4893 

Speedup LEM2/CHC         4800%  

Table 1. Results for the Rosenbrock function of  2 variables.   

In the case of four variables, the best published resu lt was achieved by a breeder GA, that required about 

250,000 evaluations (births) to achieve a result with δ=0.1 (Schlierkamp-Voosen and Muhlenbein 1994).  

LEM2 found the global optimum ( δ=0) with only 281 evaluations, that is, the speedup of LEM2 over GA 

was at least  75,000% (since the result published for GA referred to δ=0.1 rather than δ=0.1). Table 2 

summarizes the results. These results indicate that LEM2 was able to rapidly locate the portion of the 

landscape containing the global optimum.  

 

Rosenbrock function minimization 

(4 variables) 

 

LEM2 (uniLEM)    δ=0:               281 

GA    δ=0.1:       77,000  

Speedup LEM2/GA              ≥ 27,500% 

Table 2. Results for the Rosenbrock function of 4 variables. 
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Figure 7 illustrates sample rules that AQ ge nerated when LEM was applied to find the minimum of the 

Rosenbrock function with four variables, and also how they match the H -group individuals. The variables 

are discretized using the values shown in the Table 3. 

 y y y y z { | } ~ � ~ � � � ~ } � � �
 

Value 0 –2   .. -1.2 

Value 1 –1.2 .. -.4 

Value 2 –.4 .. -.4 

Value 3 .4   ..   1.2 

Value 4 1.2 ..  2 

Table 3. A correspondence of the symbolic values to real values of variables in Figure 7. 

 

The minimum is found when all the Xs are equal to 1, and this will be repres ented in the diagram by value 

3, since 3 describes the range between -.4 and 1.2, which includes 1.  The global solution is indicated in 

Figure 7 by a circle. 

 

Figure 7 .Learned Hypotheses and H-group individuals. 

 

The learned hypotheses (attributional rules) shown in Figure 7 are: 

Rule1:  [x1=1..3]  & [x2=1..4] &  [x3=1..4]  

Rule2:  [x2=3..4] & [x4=1..3]  

 

Both rules include the individual that represents the function minimum:  [x1=3] & [x2=3] & [x3=3] & 

[x4=3], in a short notation: (3,3,3,3).
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Problem 2. Find the minimum of the Rastrigin function:  

in which the number of arguments, n, was set to 100, and each x was bounded between –5.12 and 5.12. 

The Rastrigin function has many local optima, and it is easy to miss the global solution (Figure 8). In thi s 

experiment, both uniLEM and duoLEM versions were employed, and their results were compared with the 

best available result from a conventional evolutionary method, which was obtained by a parallel GA with 16 

subpopulations and 20 individuals per subpopulation (Muhlenbein, Schomisch, and Born, 1991). This result 

is shown by the point PGA in Figure 9. The LEM2' results were also compared with the performance of ES. 

 

Figure 8.  A 2D projection of  the Rastrigin function. 

The results of uniLEM, duoLEM, ES and the Parallel GA are shown in Figure 9.  
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Figure 9. Results obtained by ES,  LEM2's uniLEM and duoLEM versions, and a Parallel GA      

for the Rastrigin function with 50 variables.
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     Figure 9 illustrates the evolutionary pro cess conducted by uniLEM, duoLEM, and ES. It also shows a 

point indicating the best result obtained by the parallel GA. Each curve represents an average of 10 runs. 

The y-axis represents the fitness using a logaritmic scale, and the x-axis represents the number of births.  As 

one can see, both uniLEM and duoLEM relatively quickly. DuoLEM reached the global minimum with 

δ=0.0001 in all 10 runs after about 26000 evaluations. UniLEM found the global minimum 7 times out of 

10 (hence the average of the fitness function is higher than in the case of duoLEM). The parallel GA, which 

achieved the best result found in the literatu re on this problem, required 109072 evaluations to achieve  

δ=0.001 (it used 8 subpopulations, each with 20 individuals).  Thus, the speedup of duoLEM over parallel 

GA (PGA) was more than 420%. We also investigated the rate of convergence to the optimum ob tained of 

these four algorithms by repeating the experiment for  20, 50, and 100 variables. 
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Figure 10.  The number of births needed to reach the optimum as a function of the number of arguments. 

Figure 10 shows the dependence o f the evolution duration  (measured by the number of births required to 

reach the near-optimal solution) on the number of function arguments for different methods. As seen in the 

figure, the evolution duration in case of LEM2 has only slightly increased wit h the number of arguments, 

while in the case of  ES and Parallel GA it has increased much faster. 

Problem 3. Find the minimum of the Gaussian Quartic function: 

in which the number of arguments, n, was set to 10, 50 and 100, and each x was bounded between –5.12 

and 5.12.  This is a simple unimodal function padded with noise (Figure 11). The Gaussian noise ensures 

that the algorithm never gets the same value on the same point. Algorithms that do not do well on this test 

function will do poorly on noisy data.  In this experiment uniLEM was compared with ES. 
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 Figure 11. A 2D projection of the Gaussian Quartic function. 

 

Table 4 presents the result of comparing LEM2 in uniLEM version with ES using different population sizes.  

Results are shown for different deltas. 

 
 (# 

vars) 
 10   50   100  

 δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01     δ0.1δ0.1δ0.1δ0.1    δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01     δ0.1δ0.1δ0.1δ0.1    δ0δ0δ0δ0    δ0.01δ0.01δ0.01δ0.01     δ0.1δ0.1δ0.1δ0.1    

LEM 100 

.3 .3 
1000 800 700 4900 4400 3900 21400 10500 10100 

ES 100 

 .7 
3600 3200 2900 40100 40100 36700 432860 391979 92455 

Speedup 

LEM/ES 
300% 400% 400% 800% 900% 900% 2000% 3700% 900% 

 

Table 4. Results and relative speedups of LEM2 over ES for the Gaussian Quartic function. 

 

This experiment confirms the results of the problem 2, where it was shown that the speedup of LEM vs. 

Darwinian Evolutionary Algorithms increases as the number of dimensions increases.  Th is is to be 

attributed to the fact that blind operators such as mutation and recombination tend to be less effective with 

large search spaces.  This experiment also shows the ability of LEM to work with noisy functions. 

 

4.2 Design of Heat Exchangers 

In order to test LEM on a practical problem, we applied it to the optimization of heat exchanger designs 

under various technical and environmental constraints. To this end, we developed a specialized system, 

ISHED1, that customized LEM to this problem. To expla in this application, let us briefly explain the 

problem. In an air conditioning unit, the refrigerant flows through a loop. It is superheated and placed in 

contact with cooler outside air in the condenser unit, where it transfers heat out and liquefies. Co ming back 

inside to the evap orator, it comes into contact with the warmer interior air that is being pushed through the 

heat exchanger, as a r esult cooling the air while heating and evaporating the r efrigerant.  The heat 
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exchanger consists of an array of p arallel tubes through which the refrigerant flows back and forth.  

Different orderings of the flow of the refrigerant through the individual tubes may have a profound effect on 

the air conditioner's cooling ability.  

     ISHED1 applies a version of duoLEM  tailored to this problem.  Individuals in a population represent 

designs (structures) of heat exchangers. Each design is defined by a vector that characterizes the 

arrangement of tubes on the path from the input and the output.  In Darwinian Evolution mod e, ISHED1 

employs eight structure-modifying operators, which  make changes in the structures (analogous to mutation 

operators in evolutionary algorithms).  For example, one operator may create a split in a refrigerant path by 

moving the source of a tube's refrigerant closer to the inlet tube; second operator may swap the tubes in the 

structure; and another operator may graft a path of tubes into another path, etc. (Kaufman and Michalski, 

2000b).  The application of these operators is domain knowledge driven , that is, operators are applied 

according to  known technical constraints.  

     Machine learning mode in ISHED1 is also tailored to the heat exchanger design task.  The hypotheses 

generated describe abstractions of the individual structures. They specify  only the location of inlet, outlet 

and split tubes.  Beyond that, the instantiation module may choose among the different structures that fit the 

learned template, and generate the most plausible one according to the real -world background knowledge.  

ISHED1 uses high and low fitness thresholds of 25% to select the H -group and L -group. Once rules are 

generated, an elitist strategy is used to form the next generation of proposed architectures. The best 

architecture found so far, as well as all members of the  H-group are passed to the next generation, along 

with various instantiations of the learned rules. 

An ISHED1 run proceeds as follows. Given instru ctions characterizing the environment for the target 

heat exchanger, an initial population of designs (specif ied by the user or randomly generated), and 

parameters for the evolutionary pro cess, ISHED1 evolves populations of designs using combination of   

Darwinian and machine learning o perators for a specified number of generations. ISHED1 returns a report 

that includes the best designs found and their estimated quality (capacity). Throughout the execution, design 

capacities are determined by a heat exchanger simulator (Domanski, 1989).  

Many experiments have been conducted.  Initial experiments concerned a poblem   with a known expert 

solution (design) regarding the heat exchanger size and airflow pattern.  The best design found by ISHED1 

was comparable to the expert designs widely used by industry.  Further experiments utilized different 

exchanger sizes and airflo w patterns.  The latter changes were especially significant, because the 

commercially built air conditioners typically do not take into account an uneven airflow.  When confronted 

with such situations, their cooling ability suffers. In the case of non -uniform airflow, the ISHED1-designed 

heat exchangers performed significantly better than the currently -used expert-designed structures (Kaufman 

and Michalski, 2000b).  
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An example of the output from an ISHED1 run is shown in Figure 12.  This run was done in a v erbose 

mode, and as such, the log details every structure tested, every operator applied, and the rules learned.  The 

figure only shows a very small sample of the full output in order to give the reader a flavor of ISHED1 in 

action.  Added comments are given in italics. 

Exchanger Size: 16 x 3 

Population Size: 15   Generations: 40 

Operator Persistence: 5 

Mode Persistence: GA-probe=2 SL-probe=1 

Initial population: 

Structure #0.3:  17 1 2 3 4 5 6 7 8 9 12 13 29 15 31 I 18 33 20 36 22 38 24 40 26 42 11 2 

7 45 14 47 16 34 35 19 37 21 39 23 41 25 43 44 28 46 30 48 32:  5.5376 

Structure #0.8:  17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 

44 13 46 30 48 34 35 36 I 21 37 23 39 25 41 27 43 29 45 31 47:  Capacity = 5.2099 

and 13 others 

 

Selected Members:  3, 2, 3, 7, 9, 3, 9, ... 

Operations: NS(23, 39), SWAP(8), SWAP(28), ..., 

          SWAP(29), SWAP(25), SWAP(1) 

Below is one of the structures created by the application of a SM operator in Darwinian mode (by swapping the two tubes following 

tube 29 in Structure #0.8)  
Generation 1:  

Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 

13 45 30 48 34 35 36 I 21 37 23 39 25 41 27 43 46 29 31 47:  Capacity=5.2093 

and 14 others. 

 

Selected Members:  6, 15, 11, 3, 13, 1, ... 

. . . . . .  

The program soon shifts into Symbolic Learning Mode:  
Generation 5: Learning mode 

Learned rule: 

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x2

6.x27.x28.x29.x30.x31.x32.x33.x34.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.x46.x47.

x48=regular] & [x10=outlet]&[x16=inlet] (t:7,u:7,q:1) 

 

An example of a generated structure: 

Structure #5.1:  17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 11 27 

13 15 47 48 34 35 19 37 21 39 23 41 25 43 44 28 46 14 32 16:  Capacity=5.5377 

. . . . . . . . .  

Below is a structure from the 21st generation:  
Generation 21: Learning mode 

Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 11 44 

30 46 32 47 34 19 20 37 21 23 38 41 26 43 28 27 29 14 48 16:  5.5387 

and 14 others 

 

Selected Members:  11, 4, 4, 13, 15, 10, 12, 13, 15, 15, 12, 2, 3, 5, 10.  

. . . . . . . . .  

ISHED1 continues to evolve structures, and finally achieves:  
Generation 40: 

Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 

42 43 44 27 13 15 32 16 18 11 19 37 21 32 23 25 40 26 28 35 30 14 48 31: 

Capacity=6.3686 

Figure 12.  An excerpt from the log of an ISHED1 run. 

5 Summary 

This paper presented a selection of recent results f rom the research on Learnable Evolution Model that  

employs machine learning to speed up evolutionary computation.  The results were obtained by system 

LEM2, which can operate in  two versions, uniLEM and duoLEM. The uniLEM version executes 

repeatedly Mach ine Learning mode, which uses rule learning and instantiation as basic operators (the 

Startover operator allows the system switch the population). The duoLEM version alternates between 



 5

Machine Learning and Darwinian Evolution mode. The latter mode applies a conventional evolutionary 

computation algorithm.  

LEM2, described in this paper, is an improvement of the earlier system, LEM1.   It  implements a multiple 

rule instantiation (catering to multiple global optima), adaptive anchoring discretization (an aut omatic 

adjustment of the precision in discretizing continuous attributes), and a uniLEM version.  The results from 

LEM2 have confirmed previous strong results (Michalski and Zhang, 1999), and demonstrate that the LEM 

methodology can be highly useful for some problems.  

     ISHED1 is a version of LEM tailored to a class of problems in engineering design (optimization of heat 

exchangers). It applies task-specific operators in a LEM -type control environment.  Results have confirmed 

significant  benefits from integrating Darwinian Evolution and Machine Learning modes of evolution.  By 

doing so, ISHED1 was able to achieve or exceed the cooling capacity of commercially designed systems 

under a variety of conditions, with only a moderate amount of domain knowledge. 

     The processs of generating new individuals by hypothesis generation and instantiation used in LEM is 

computationally more intensive than the process of generating new individuals by mutation and/or 

recombination. This is offset by the reduction, som etimes very significant, in the number of evaluations  

needed to reach the evolution goal. Thus, LEM appears to be particularly well -suited for evolutionary 

computation problems in which evaluating fitness of individuals in a population is a costly and/or time-

consuming operation (as is, e.g.,  in the case of heat-exchanger design).   

The LEM methodology is at an early stage of development and  opens many interesting problems for further 

research. They include a theoretical and experimental investigation of  the trade -offs inherent in LEM, an 

implementation of more advanced versions of LEM, an experimentation with different combinations of 

conventional evolutionary algorithms and machine learning algorithms, and testing in variety of practical 

domains. 
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