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Abstract

Surface latent heat flux (SLHF) has been associated with the study of natural hazards, such as earthquakes and

hurricanes and has been proposed as a useful quantity in the prediction and monitoring of their evolution. In the present

study the Mediterranean Sea, parts of Europe, Africa and Turkey are mapped with regard to the multifractal

characteristics of SLHF time series during a period of eight years (1997–2004). The estimated Hurst exponents are

markedly larger over land than over sea. In the case of land, SLHF has the characteristics of a mean-averting process,

while its records are over sea noticeably uncorrelated. In contrast to the rather monofractal and weak multifractal

character observed in most regions, with the application of a detrended fluctuation analysis, intense multifractality is seen

mainly in North Africa. Crossover segments are present in the scaling of negative moments, implying that the small SLHF

fluctuations are affected by seasonal components. Identification of anomalous SLHF deviations from their long-term

multifractal behavior may serve as a precursor of extreme atmospheric phenomena.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades significant advances have been made in our understanding of the interactions between
the atmospheric and geophysical processes, mainly due to the use of very large databases obtained either from
earth or remote satellite sensors. It has been proposed that atmospheric phenomena may prove useful in short-
term earthquake prediction [1]. Surface latent heat flux (SLHF) is a geophysical parameter whose study has
recently been related to earthquakes [2–4] and other natural hazards, such as cyclones and hurricanes. SLHF
is associated with the phase change of water, and is directly proportional to the amount of evaporation on the
surface of land and sea. In order to provide robust identification methods of possible precursors based on
SLHF, which are usually in the form of anomalies such as the presence of singularities in the experimental
time series, the long-term behavior of SLHF should be understood. Although the precise method for utilizing
SLHF for short-term predictions of geophysical and atmospheric hazards is not yet well established, the
e front matter r 2006 Elsevier B.V. All rights reserved.
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severity of such phenomena makes it worth of further study. Moreover, since SLHF is a key factor of the
Earth’s energy budget, exploring it further can provide useful information in other areas of research such as
meteorology and hydrology. We characterize in this work the multifractal behavior of SLHF time series for
the region of the world over the Mediterranean Sea, parts of Europe, Africa and Turkey and for the period of
eight years (1997–2004).

Fractals have been introduced in order to quantify the self-similarity observed in nature, while at the same
time to make possible the study of non-differentiable processes [5–7]. Given that this self-similar behavior has
often a ‘‘local’’ character (either in space or time), the theory of fractals was generalized to multifractals [7,8],
enabling the description of more complex phenomena with varying fractal properties. Examples of processes
that have been thus treated are the energy dissipation in turbulence [9] and the price increments in finance [10].
In the field of geophysics and atmospheric physics, fractal and multifractal analyses have been extensively
applied [11,12], since self-similarity is present in a wide variety of such phenomena, from the distribution of
earthquake epicenters [13–15] and hypocenters [16] to climate change [17] and atmospheric turbulence [18,19].
In the same field of research, fractal and multifractal methods have been used both to characterize the long-
term behavior of related signals and to indicate possible precursors in experimental time series of their records,
yielding very promising results [20–27].

An introduction to the SLHF geophysical parameter in Section 2 gives also information regarding the
dataset used. Section 3 offers a brief overview of the theory of fractal and multifractal processes, while the
methodology implemented is described in Section 4. The results of this multifractal analysis are presented in
Section 5 and their significance in relation to natural hazards is discussed in Section 6.

2. Surface latent heat flux & dataset

SLHF is a key component of the Earth’s energy budget and hydrological cycle. It represents the amount of
energy moving from the surface to the air due to evaporation (positive values) or from the air to the land due
to condensation (negative values) [28]. In that sense, water vapor is indeed very dynamic. It is transported
vertically through atmospheric circulation as well as latitudinally from the equatorial regions towards the
poles. At the poles it is condensed as rain or snow releasing the heat energy stored within the water molecules
[29]. SLHF is generally higher over the sea, than is over the land, because of the presence of larger amounts of
water changing into water vapor.

SLHF records are the product of several parameters such as primarily surface air temperature, humidity
and wind speed [30]. These parameters are recorded in situ with devices on buoys and ships, and even from
large distances by remote sensing devices on satellites [31]. SLHF, as a derived observable, may be subjected to
partial errors due to inaccuracies in the individual measurements, or even due to omission of other parameters
that have been considered of lesser importance. Bentamy et al. [31] have discussed the different methods
presently used to compute and validate various SLHF products.

SLHF plays an important role in the formation of hurricanes and cyclones, providing an early warning
regarding their intensity and amount of rainfall once the storm makes landfall [32,33]. A hurricane begins to
form when the latent heat is released as the clouds condense into liquid, warming the atmosphere. When the
air becomes warmer, it expands producing an area of low pressure which becomes the center of the storm. Due
to the low pressure gradient generated, warmer air moves towards the center of the forming hurricane from
the surrounding areas, evaporating and causing this process to repeat and intensify. For the quantitative
analysis of SLHF associated with severe atmospheric phenomena, like hurricanes and cyclones, it is worth
understanding the evolution of SLHF time series and their multifractal characteristics due to its strong
association with such phenomena.

A large-scale characterization of the multifractal properties of SLHF is not realizable and beyond the scope
of this paper. We chose to analyze SLHF around the Mediterranean Sea where a variety of very different
multifractal activities is observed. The SLHF data used for the present analysis consist of daily estimated
values from 1/1/1997 to 31/12/2004, i.e., 2922 days, and cover a rectangular area over the Mediterranean of
latitude from 29.52N to 50.48N and longitude from 5.62W to 41.25E, as shown in Fig. 1.

Although SLHF data are available from 1940, data prior to 1997 is found to be less reliable, and it was
deliberately not included in this study. The data are estimated on a grid of equally spaced longitudinal lines
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Fig. 1. Map of the area used in the analysis. Numbered squares: grids presenting characteristic behavior. Red circle: location where

correlation between multifractal behavior and seismicity is observed.
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with a 1:875� spacing and almost equally spaced latitudinal lines with an approximately 1:9� spacing. The
SLHF records of the present dataset have been estimated from both in situ observations at various stations as
well as from satellite data. Past observations are being reprocessed according to the NOAA NCEP/NCAR
reanalysis project [34], in order to diminish the effect of frequent changes in assimilation methods. The data
are available on line from the website of the Scientific Computing Division of the National Center for
Atmospheric Research.1

3. Self-similar and multifractal processes

A process Y H ðtÞ, where t40 is said to be self-similar with index H, if for every l40 the following relation
with respect to the finite dimensional distributions (f.d.) holds [7]

Y H ðltÞ ¼ lHY H ðtÞ. (1)

The index H is called the Hurst exponent2 [35,36] and carries information in relation to the scaling of Y H ðtÞ

when the t-axis resolution is rescaled, i.e., when the process is observed over larger or smaller time lags. On the
other hand, H is a measure of the regularity of the process and consequently of the roughness of the graph of
Y H ðtÞ [6]. If Y H ðtÞ has stationary increments, then 0oHo1, while for differentiable processes or processes
with non-stationary increments H41. Totally uncorrelated processes with stationary increments exhibit
H ¼ 0:5. For Ho0:5 the process is mean-returning and is said to exhibit anti-persistent behavior, while for
H40:5 the process is mean-averting and persistent [36]. The graph of Y H ðtÞ is then a fractal, with fractal
dimension D ¼ 2�H [6,37].

Scaling of the form of relation (1) is very restrictive in the case of real applications, since the singular
behavior of natural processes often varies with time and a global Hurst exponent H is not sufficient to
characterize the process. In order to quantify the fractal characteristics of the process adequately in this
instance, either a local time-dependent exponent hðtÞ or the scaling of a distribution of generalized scaling
exponents hðqÞ is determined, where the parameter q defines the order of the moment of this distribution (see
Eq. (5)). In the first case, the local information of the process is preserved, which is lost in the second
1http://iridl.ldeo.columbia.edu/SOURCES/NOAA/NCEP-NCAR
2After the English hydrologist E. Hurst who observed self-similarity in the long-term behavior of the water influx of the Nile.

http://iridl.ldeo.columbia.edu/SOURCES/NOAA/NCEP-NCAR
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approach. However, since there is no robust method to estimate a local exponent from real data, the second
procedure is usually followed. The process is then considered to be multifractal in both cases, in contrast to the
monofractal processes described by relation (1).

In this context, the records of a process are considered to be measures over geometric supports (which in the
case of time series analysis usually involves the time axis) exhibiting inhomogeneous scaling behavior. In fact,
multifractal measures can be decomposed into interwoven fractal subsets, each one described by a different
scaling exponent. However, in order to fully characterize multifractals, the ‘‘density’’ of occurrence of each
fractal subset is also crucial. This information is provided by the multifractal (or singularity) spectrum
function f ðhÞ, which is related to the probability of observing a singularity of strength h at any given scale.
More precisely, while the exponent h describes the scaling of the measure (or, of the process) in the
‘‘neighborhood’’ of a fixed point t, f ðhÞ defines the rate of exponential decay of the probability of observing h

in the ‘‘neighborhood’’of any point in the time series. Furthermore, under certain conditions f ðhÞ can be
considered as a box counting dimension of the set of points with exponent h [9].

4. Methods

4.1. Normalization

A major issue in the fractal analysis of experimental time series is the detection and removal of periodic
components. The presence of deterministic trends in time series has been studied thoroughly and it has been
shown that it can bias the results of the analysis [38]. The procedure followed to minimize the presence of the
strong periodical components in the SLHF records is the following. Each day of the year is taken to be the
center of an 11-day window consisting of the five preceding days and the five days that follow. An average
SLHF value is associated with each day in question being the mean of the corresponding 11 day window over
all the years available, i.e., of the 11 days in 8 years, or 88 days. For the first and last five days of the year, the
time series is padded periodically.3 Finally, the SLHF record of each day is normalized by subtracting the
corresponding to 88-day average.

4.2. MF-DFA analysis

The above normalization procedure may still leave SLHF time series at each location strongly non-
stationary, as well as traits of seasonal components. That calls for the use of either the wavelet-based method
[39] or the detrended fluctuation analysis (DFA) in order to eliminate any remaining trends, which could lead
conventional methods to failure. In the current study of SLHF the multifractal DFA algorithm (MF-DFA)
[40] has been selected for its high accuracy [41].

The MF-DFA proceeds as follows: let Y ðtÞ denote the time series where t ¼ 1; 2; . . . ;L and L the length of
the time series. First the profile X ðtÞ is defined as

X ðtÞ ¼
Xt

j¼1

ðY ðjÞ � hY iÞ, (2)

where

hY i ¼
1

L

XL

j¼1

Y ðjÞ (3)

is the mean of the time series. Then, a set of windows N is selected such that 1oNoL, and the time series is
divided in ½L=N� segments of size N, where ½L=N� denotes the integer part of L=N. Usually a very small
number of data points, in comparison to L, remains after the L=N division. In order to diminish the effect of
deterministic trends in the estimation of the scaling exponents, we find the best (in a least-square sense) fitting
polynomial Pði;NÞ to X ðtÞ in each of the segments for each value of N, where i ¼ 1; 2; . . . ; ½L=N�. The
3For example, the 11-day window corresponding to the first day of January consists of 11 days from 26th December to 6th January.
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detrended fluctuation F is defined as the square root of the second order moment of the differences between
the profile X and the fitting polynomial P

F ði;NÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1

ðX ðj þ ði � 1ÞNÞ � Pði;NÞÞ2

vuut . (4)

For future convenience we introduce the scale parameter n ¼ N=L. Then, for each scale n, the qth root of the
qth moment of the detrended fluctuation F is considered:

Zðq; nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�
X½1=n�

i¼1

F ði; nÞq
q

vuut , (5)

where q is a real parameter. The role of q becomes obvious from the definition of Zðq; nÞ: for q40 the largest
fluctuations of F will dominate the sum, while for qo0 the most important contribution to the sum comes
from the smaller fluctuations of F . Finally, the scaling of Zðq; nÞ with respect to the scale parameter n is
considered, i.e., the graph of logðZðq; nÞÞ vs. logðnÞ is plotted for various values of q. For small enough n, it is
expected that Zðq; nÞ will scale as

Zðq; nÞ / nhðqÞ, (6)

where hðqÞ is the generalized Hurst exponent. For q ¼ 2, the hðq ¼ 2Þ provides the global Hurst exponent, H.
If the series is monofractal then hðqÞ is independent of q and hðqÞ ¼ H for every q. In the case of multifractal
series, hðqÞ is usually continuous over the interval ½hmin; hmax� where hmin; hmax are the minimum and maximum
generalized Hurst exponents, respectively.

In our analysis the cut-off size of window, referring to the lowest parameter N used, is fixed to 20 days in
order to avoid the effect of the short-range correlations interfering with the normalization process. The upper
limit is set to 500 days, since above that the sum of relation (5) contains very few terms (due to the finite length
of the available time series) making the representation of the fluctuations inadequate. Finally, we consider
only values �1oqo5 in order to provide satisfactory linear fits of logðZðq; nÞÞ vs. logðnÞ.

5. Results and discussion

Before discussing the results of the multifractal analysis of the SLHF time series, it is worth looking into its
seasonal and geographical variation. Selected regions of interest are numbered by grid, Fig. 1 and Table 1. As
expected, over the sea SLHF is higher than over land, Fig. 2.

The distinction between land and sea becomes less prominent in the winter, however. The regular seasonal
pattern of SLHF reaches maximum during the warmer summer months around the southern parts of the
Mediterranean Sea near Africa, primarily due to the warmer sea surface temperature, while maxima
generally recorded over islands and coasts. SLHF reaches its minimum during the cooler winter months,
Table 1

Coordinates, global Hurst exponent ðHÞ and range of generalized exponents ðR ¼ hðq ¼ �1Þ � hðq ¼ þ5ÞÞ for small and large scales of the

grids used

Latitude Longitude Grid ID H R small (large) scales

29.52N 15E 12 0.35 0.93 (0.93)

35.24N 3.75W 80 0.52 1.43 (0.42)

35.24N 1.88E 83 0.74 0.91 (0.91)

39.05N 7.5E 138 0.49 0.27 (0.09)

39.05N 37.5E 154 0.99 0.07 (–)

46.67N 11.25E 244 1.03 0.02 (0.02)

46.67N 41.25E 260 0.84 0.06 (0.06)
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Fig. 2. (Top) Average and (bottom) highest values of SLHF from 1/1/1997 to 31/12/2004.
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Fig. 3. This seasonal fluctuation is, nevertheless, more prominent over land than over sea as it is, for instance,
over the Italian Alps (grid 244), where the largest difference between winter and summer months is recorded,
Turkey (grid 154) and Russia (grid 260). A seasonal pattern is also observed over Morocco (grid 83), although
it is now reversed with lows during summer and autumn and highs during winter and spring. Moreover, in
Morocco the SLHF fluctuations are smoother during the summer and autumn months. SLHF over the Sahara
desert (grid 12) is always very low-almost zero-with scattered sharp peaks of a few W=m2 during winter.

Statistical information on the SLHF time series is provided in Fig. 4 with five boxplot diagrams for various
grids, as well as with a diagram presenting averages and standard deviations throughout the year. The
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Fig. 3. SLHF average during (top) winter (December to February) and (bottom) summer (June to September) from 1/1/1997 to 31/12/

2004.
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corresponding SLHF time series are plotted in Fig. 5. The SLHF distributions are asymmetrical exhibiting a
positive skew that varies in magnitude per grid. The skewness is less prominent where low SLHF values are
observed. It is worth noticing the low variance throughout the year in the desert regions of North Africa (grids
12 and 83). One important information the boxplots can convey, with regard to rare events, is the number of
potential ‘‘outliers’’, or points that lie above 1.5 times the interquartile range. Such extreme points suggest the
presence of strong fluctuations in the SLHF time series, associated with atmospheric phenomena and most
importantly with natural hazards.
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5.1. Hurst exponent

The nature of long-range correlations within the SLHF records can be explored with the help of the Hurst
exponent. A map of the 8-year long global Hurst exponents has been constructed and shown in Fig. 6a. Two
distinct regions can be identified: (a) central Europe and (b) sea, the Hurst exponent being in general lower
over water than over land. In particular, over sea the SLHF records are uncorrelated or weakly correlated,
exhibiting an approximate H�0:5 (blue shades). Over Europe, on the other hand, the Hurst exponent suggests
the presence of persistent long-range correlations ranging within the interval ½0:5; 1� (green, yellow and red
shades). Coasts and islands form an intermediate category where the Hurst exponent is weakly persistent.
Africa, on the other hand, represents a special case where the long-range correlations span from strong
persistence (Algeria) to anti-persistence as in Libya where the smallest value is registered (H ¼ 0:35). In
contrast, the highest Hurst exponents are registered over Turkey (H ¼ 0:99), at the border between Austria
and Switzerland (H ¼ 1:03) and in Ukraine (H ¼ 0:93) (Table 1). The distribution of global Hurst exponents,
Fig. 7a, is narrower over the sea and Africa than the rest of land.

To investigate further the origin of the correlations in SLHF records, we shuffle the data4 of all the time
series and reanalyze them. The map of global Hurst exponents after shuffling and their distribution are shown
in Figs. 6b and 7b.

The Hurst exponents after shuffling drop to approximately 0:5, indicating not only the removal of
correlations but also that these correlations were not a probabilistic attribute of the seasonal variability of
SLHF. The seasonal component is, in any case, removed during the normalization process and the DFA. The
difference of SLHF patterns between land (persistent correlation) and sea (absence of correlation) suggests the
presence of non-periodic elements of SLHF over land, which could be attributed to the long-range
4The SLHF time series over each location is shuffled by selecting pairs of values in random and exchanging their positions in time. This

procedure is performed twice, expecting that any present correlations would be destroyed.
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correlations observed in rainfall records [35,42,43]. Since SLHF does not have a strong dependence on
rainfalls over the sea, the uncorrelated data patterns should be expected. However, the anti-persistence
observed over the deserts of Africa, may still be related to the rainfalls in those parts of the world, even though
it does not lead to persistent correlations. The reason might be that in the deserts very low SLHF values are
generally recorded almost all-year round. For short time periods intense rainfalls take place, which would
temporarily yield very high SLHF values and consequently to anti-persistent fractal behavior.
5.2. Multifractal analysis

We shall discuss the multifractal character of SLHF at each area on the basis of the range R of the estimated
generalized Hurst exponents estimated from the MF-DFA. The range R, defined as R ¼ hðqminÞ � hðqmaxÞ,
quantifies the difference between the scaling of small and large fluctuations and can be considered thus as a
measure of the heterogeneity of the fractal behavior of SLHF. We begin the discussion with the positive values
of parameter q (see Section 4), R ¼ hð0Þ � hð5Þ, (i.e., the range of middle to large SLHF fluctuations), while the
consequences of the negative moments (low SLHF fluctuations and smooth parts of the time series) will be
discussed later.

A map of ranges R is shown in Fig. 8 for original and shuffled data while their corresponding distributions
are shown in Fig. 9. Africa exhibits stronger multifractal SLHF character, R ¼ 0:65� 0:18, in contrast to the
majority of the other regions. The highest value of R is observed over east Libya (R ¼ 0:96). Among the
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Fig. 6. Map of the global Hurst exponents, H, of the (top) normalized original and (bottom) shuffled SLHF time series.
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regions of low multifractality the higher R is estimated for the east of Turkey (R ¼ 0:33) and Southeast
Mediterranean (R ¼ 0:35). The lowest R is recorded over South Italy (R ¼ �0:07).5

The multifractality in the smoother parts of the SLHF time series is investigated by the negative qs, as can
be explored for q ¼ �1. The scaling relation (6) does not now always hold for negative values of q ð�1oqo0Þ.
For such negative moments the following cases are observed. Certain regions which exhibit strong
multifractality for positive q, now exhibit a crossover scale, i.e., two scaling intervals, N, each of different
scaling exponent, such as in North Africa. On the other hand, for those areas where SLHF was monofractal
for positive q, relation (6) holds for all N (uniform scaling), such as in North Italy. There are, nevertheless,
5Considering that the error in the estimation of R is at the order of 0.1, such negative value is in fact statistically equivalent to zero and

indicate monofractal SLHF behavior.
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Fig. 7. Distribution of the global Hurst exponents. (Top) Europe and Near East, Africa and sea. (Bottom) Original and shuffled time

series.
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locations where the scaling collapses completely and the linear relation (6) is no more adequate to describe the
behavior of SLHF, such as in Middle East. Characteristic examples of uniform scaling, crossover behavior
and collapse of scaling are presented in Fig. 10. The scaling exponents hð�1Þ for small ð20oNo120Þ and large
values ð120oNo500Þ of N, representing the intensity of short- and long-range correlations are shown in
Figs. 11(a) and (b), respectively. Areas for which relation (6) leads to gross errors, indicating the presence of
non-linear scaling for small or/and large scales, are colored gray. The observed scales N where crossover
occurs range from 40 to 270 days averaging to 120 days. This periodical element in the time series can be
attributed to the seasonal component that has survived after the normalization. The long-range correlations in
the smooth fluctuations of the SLHF are apparently affected by the seasonal component. However, these
periodicities are rather singular than smooth in nature, since they would have otherwise been eliminated by
either the DFA or the normalization process.

The scaling of all the moments of the shuffled time series becomes linear regardless of location. This
supports the view that the presence of a crossover scale was due to some seasonal element that the shuffling
wiped out. The shuffling of SLHF records, Figs. 8b and 9b, decreases their observed multifractality by about
59% on average. This reduction implies that the observed multifractality in Africa was the result of both a
broad probability distribution of SLHF records, as well as of a variety in long-range correlation magnitudes
for the small and large fluctuations of SLHF. The weak multifractality observed in areas other than Africa can
only be attributed to the common origin of the long-range correlations in SLHF in those areas. We have
suggested that this is due to the rainfalls.
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Fig. 8. Map showing the range of generalized Hurst exponents. (Top) 0oqo5, normalized original SLHF time series. (Bottom)

�1oqo5, shuffled time series.
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6. Conclusions

The multifractal analysis of SLHF records over the Mediterranean Sea and the surrounding land, as
estimated from data of the last eight years, has led to a quite clear picture regarding this dynamical process.
Three distinct regions of similar SLHF multifractal behavior are distinguished: (a) The Mediterranean and
Black Seas, (b) Africa and (c) Europe and Near East. An attribute of SLHF is that it is always higher over the
sea with a weaker seasonal variability and exhibits monofractality in its time series that indicates uncorrelated
data. Over Europe, the seasonal component is much stronger and SLHF shows monofractality and
persistence, which is probably related to the long-range correlations induced by rainfalls. The lowest values of
SLHF are observed over Africa, where SLHF changes from anti-persistent (deserts) to persistent and presents
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Fig. 9. Distribution of the range of generalized Hurst exponents over Europe and Near East, Africa and sea. (Top) 0oqo5, normalized

original SLHF time series and (bottom) �1oqo5, shuffled time series.

−

Fig. 10. Scaling of the negative moments for selected grids. Triangles: whole-range linear scaling, grid 218 (North Italy). Circles: crossover

of linear scaling at 90 days, grid 113 (North Africa). Squares: non-linear scaling, grid 52 (Middle East).
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Fig. 11. Generalized Hurst exponent for q ¼ �1 over (top) small and (bottom) large scales. Gray areas: regions where linear scaling

collapses.
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intense multifractality which is due both to a broad probability distribution and a variety of long-range
correlations for small and large fluctuations. Moreover, the existence of crossover scales, mainly over the
northwest African coasts, implies that the smaller fluctuations of SLHF are affected by seasonal components
that survived the normalization.

The application of our results in the field of forecasting and monitoring is straightforward. Possible
precursors may be detected related to the appearance of ‘‘anomalous’’ fractal or multifractal characteristics in
the short-term behavior of SLHF, as for example significant deviations from the long-term records of the
Hurst exponent, or of the range of scaling exponents. Such evaluation by contrast approaches have already
been used successfully in the analysis of ULF geomagnetic data [25], where increase of multifractality has been
observed prior to large earthquakes and other natural hazards [27,44]. Knowledge of the long-term behavior
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Fig. 12. Generalized Hurst exponent for q ¼ �1 and earthquake events over Central Italy (red circle in Fig. 1) during 1997–2004.
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of scaling exponents characterizing the SLHF time series over several locations could be, therefore, used as a
reference in the short-term prediction analysis. As the box-counting algorithms used in these studies are not
applicable on non-stationary data like SLHF, ‘‘local’’ versions of the DFA [45] and the wavelet-based
methods [46,47] could be applied instead in order to quantify its fractal behavior over short periods of time.

To this end we have applied the local MF-DFA in the SLHF time series over central Italy, as shown in
Fig. 1 (red circle). Taking into account that within the time period of interest strong earthquakes have been
rather rare in this region, it is inevitable that we will be studying the effects of almost isolated events on SLHF.
We have considered a moving window of 256 days wherein the analysis is performed, according to the
discussion in Section 4.2, with the scale parameter N ranging from three weeks to three months. The resulting
analysis shows a notable association between the generalized Hurst exponent hðq ¼ �1Þ and the earthquake
events, Fig. 12. During the first six years of the time series, the exponent hðq ¼ �1Þ remains below 1.5 and rises
to almost 2 in the year 2003 when very strong earthquakes have been registered.

The increase of hðq ¼ �1Þ results from the fact that the smooth parts of the SLHF time series related to it,
were even smoother during 2003 than they were in previous years. This could have been brought about by the
effect of a deterministic factor, a geophysical process related to strong earthquakes, which advances in time
scales from three weeks to three months. Furthermore, since similar multifractal features are observed over
most of the neighboring regions, our findings cannot be considered as an artefact of the small window chosen
in the analysis and cannot be attributed to errors of evaluation.

This remarkable result is, however, only indicative as a more systematic study is required between the
multifractal behavior of SLHF and seismicity in order to draw definite conclusions. As shown in the case
presented here, it is very likely that the local SLHF behavior is influenced by the earthquake activity of the
neighboring regions. A detailed analysis involving statistical evaluation of related evidence must be performed
in order to discriminate between all possible sources of anomalous behavior. The task to test the hypothesis
that SLHF multifractality unambiguously correlates with seismicity is reserved for future work.
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