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Abstract—A spatiotemporal methodology is presented for
the analysis and visualization of atmospheric emissions in a
metropolitan area. Numerical transport and dispersion models
are used to build a library of time-dependent emissions of
hazardous gases under various atmospheric conditions and
from multiple potential sources in Washington DC. This library
comprises representative emergency events that may involve
natural or man-made hazardous emissions. To represent and
analyze the events of this library we use the model of the
spatiotemporal helix, which provides concise summaries of
complex spatiotemporal events. We demonstrate the ability
to compare emerging situations to library entries in order
to predict their future evolution, thus recognizing potentially
hazardous conditions early in their development.

I. INTRODUCTION

Accidental or intentional releases of chemical, biological

and nuclear agents in the atmosphere can have a a serious

impact on health. A fundamental problem associated with

the analysis of atmospheric emission data is the identica-

tion of the characteristics of the source such as, e.g., its

location and emission rate [1]. This application requires

the spatiotemporal analysis and visualization of data which

are often rapidly changing, incomplete, and very noisy.

The identication of the source characteristics has become

a primary interest of national security. The accuracy of a

forward transport and dispersion simulation (from source

to sensor) of a toxic gas depends on a number of factors,

such as the scale of the phenomenon, the accuracy of the

source term, the availability and representativeness of mete-

orological data, the coverage of the sensor network and the

averaging times of its measurements, and the approximations

inherent in the numerical model in order to perform the

simulation in a real- istic time frame and with a realistic

data storage capability. Even in controlled eld experiments,

model simulations can at best give only an approximate rep-

resentation of the evo- lution of an atmospheric contaminant.

Backward transport and dispersion simulations (from sensors

to source) are even more uncertain.

To complement the capabilities and overcome some of

the limitations, numerical models are ever more frequently

paired with methods from statistics, computer science and

machine learning. This trend is fueled by the increasing

availability of fast and scalable algorithms from different

disciplines. Bayesian methods aim at an efficient execution

of an ensemble of forward simulations, where statistical

comparisons with observed data are used to improve the

estimates of the unknown source location [2]. These methods

consist of forward dispersion simulations from each candi-

date source, where the goal of the algorithms is to minimize

the error between simulated and measured concentrations.

These methods are independent of the type of model used,

the type and amount of data, and can be applied to non-linear

processes as well. Monte Carlo algorithms also have the

advantage of working well with real-valued attributes, which

are the most common type in a source detection problem.

Powerful methodologies based on Bayesian inference

coupled with Monte Carlo based stochastic sampling were

employed to reconstruct atmospheric contaminant dispersion

[3], [4], [5]. A similar line of research aimed at using directly

Monte Carlo simulations to minimize the error between

simulated and measured concentrations was proposed by [6].

A similar approach was followed by [7], [8], [9], who

use an iterative process based on genetic and evolutionary

algorithms (GAs) (e.g., [10], [11]) to find the characteristics

of unknown sources. They perform multiple forward simula-

tions from tentative source locations, and use error functions

to quantify the agreement between simulated and measured

concentrations. An extension of evolutionary algorithms

was used by [1], where an evolutionary process guided

by machine learning was employed to identify the source

characteristics of atmospheric emissions.

Although these models proved to work well, there is a lack

of an efcient spatiotemporal representation for the analysis

and visualization of the emission information, namely, they

do not take full advantage of the spatiotemporal information

associated with emissions. In this paper we investigate the

use of our spatiotemporal helix structure [12], [13] to repre-

sent and analyze atmospheric emissions. We are particularly

interested in instantaneous release of contaminants, as they
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Figure 1. A spatiotemporal event: distribution of a pollutant in the atmosphere.

may be monitored by sensors distributed in a metropolitan

area.

The spatiotemporal helix is a framework for describing

and summarizing spatiotemporal phenomena. Designed to

allow efficient querying of data, the strength of the spa-

tiotemporal helix lies in its ability to simultaneously describe

both an objects movement and deformation through time.

The helix representation was extend to characterize the

avarage concentration of pollutants in the toxic cloud. The

helix 3D structure was applied to discover correlations be-

tween 500 simulated emissions in Washington DC. The goal

is to find the maximum correlation between the emissions in

the library of pre-computed cases and a new event. In this

manner, developing events are compared to a library, and

provide early warning for emerging situations of interest.

This forms the basis for a broader integrated framework

for situation awareness and monitoring using atmospheric

transport and dispersion models, networks of ground sensors,

and spatiotemporal modeling and analysis through helixes.

II. METHODOLOGY

The first task consists of building a library of simulated

or observed emissions for a specific area, under different

meteorological conditions. The scope of the library is to

sample as extensively as possible all potential outcomes

of an accidental release, which can occur anywhere within

the domain boundaries. In some cases, intelligence analysis

(e.g., of potential terrorist attacks) can reduce the search do-

main by identifying potential locations, such as, for example,

Figure 2. 3D Helix representation of a release. The concentration field
represents the cumulative ground deposition of contaminant particles. The
helix color indicates the acceleration of the contaminant cloud as increasing
(blue) or decreasing (red). The yellow circles show the break-points, the
locations of significant changes in the helix structure.

power plants, chemical complexes, or sensitive buildings.

Each emission consists of a time-dependent cloud which

travels and disperses three dimensionally through the at-

mosphere. Each cloud is represented by an helix structure,

which is defined in Section II-B. The advantage of the

helix is to provide a compact representation which preserves

both spatial and temporal information, but at the same time

provides an ideal way to analyze and visualize the emissions.

Each contaminant cloud is also associated with a threat map,
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depending on the sensitivity of the area covered.

When a new emission is detected by ground sensors a

concentration field is quickly reconstructed, and converted

to helix structure. A correlation coefficient is computed

between the new concentration field and those stored in

the library. When the correlation coefficient is above the

acceptance threshold, a classification is made.

A. Transport and Dispersion Simulations

The numerical simulation are performed using a reflected

Gaussian plume dispersion model. Each simulation requires

8 input variables: x, y, z, θ, U,Q, S and ψ. x, y, and z are

the coordinates of the release in m; θ and U are respectively

the wind direction and speed in degrees and ms-1 and are

time-dependent variables; Q is the source strength in gs-1;

S is proportional to the area of the release in m2; and ψ
describes the atmospheric stability according to Pasquill’s

stability classes [14], [15].

The concentration at the sensors Cs are simulated using

a 3D Gaussian dispersion model:

Cs = P1P2P3(P4 + P5) (1)

where

P1 =
Q

U
√

(2π)3(S + σ2
x)(S + σ2

y)(S + σ2
z)

(2)

P2 = exp
[
− (x− x0)2

2(S + σ2
x)

]
(3)

P3 = exp
[
− (y − y0)2

2(S + σ2
y)

]
(4)

P4 = exp
[
− (z − z0)2

2(S + σ2
z)

]
(5)

P5 = exp
[
− (z + z0)2

2(S + σ2
z)

]
(6)

where σx(x, x0;ψ), σy(x, x0;ψ), and σz(x, x0;ψ) are the

dispersion coefficients, which were computed from the tab-

ulated equations of Briggs [16].

B. Helix Spatio-Temporal Representation

Lets consider a spatiotemporal phenomenon, like the

dispersion of a pollutant in the atmosphere, moving from

its point of origin in Arlington, VA, towards DC, as it was

captured by a network of ground sensors, overlaid on a

corresponding map (Figure 1). It can be easily understood

that this could also reflect a similar spatiotemporal phe-

nomenon captured e.g. by satellite remote sensing, as the

proposed methodology is not application- or data-dependent,

but instead has broad usage potential.

Figure 2 shows a summarization of this phenomenon

in the form of its spatiotemporal helix. This spatiotempo-

ral helix comprises two components [12]. The first is a

central spine, which depicts the trajectory of the entitys

center of gravity, and variations in the entitys attributes

(density for this example). It is defined by a series of

nodes, si = {x, y, t, qm, qa} where x, y, and y are the

nodes spatiotemporal coordinates, qm is a qualifier that

is characterizing the nodes dominant type of movement

(acceleration, deceleration, or rotation), and qa is a qualifier

that is characterizing the nodes type of attribute variations

(e.g. the event becomes more or less dense). The second

component of the helix are the prongs protruding from

the spine (represented by the arrows in Figure 2). Prongs,

pi = {t, r, q1, a2}, describe an objects deformation, and are

defined in terms of the time coordinate t, the magnitude

of outline change r (with positive values for r indicating

expansion and negative values indicating contraction), and

a1 and a2 denoting the azimuth range of the deformation.

Prongs exist independent of nodes, and appear at any time t
along a helixs spine with outward facing arrows indicating

expansion and inward facing arrows indicating contraction.

A helix comprises spine and prong information to describe

an events spatiotemporal behavior. As such, any given helix

can be expressed as an aggregate of nodes and prongs as:

and can be stored in a geospatial or standard open-source

databases (e.g. PostgreSQL).

Combined, spine and prong information provide a concise

signature of an events spatiotemporal behavior, capturing for

example the changing shape of the pollutant cloud in our

example. The movement of a car will be represented through

a spine only (as the car does not change its shape).

C. Helix Correlation and Classification

The degree of correlation between helixes is computed by

mean squared difference (MSD) of the normalized internal

representation of the helixes (Equation (7)).

MSD =
n∑

i=0

(xa
i − xb

i )
2 + (ya

i − yb
i )

2+ (7)

(qa
ai − qb

ai)
2 + (qa

mi − qb
mi)

2

where n is the length of the helixes, x, y, qa, qm are the

dimensions of the helix, and a, b are the two helixes being

compared.

First, the internal representation of the helix is normalized

to weight each variable equally. Then the correlation is

computed by aggregating the MSD of all corresponding

tuples in the helixes. If the helixes have different lengths,

due to a different travel time of the respective releases, mul-

tiple similarities are computed by considering all possible

combinations, where the smallest helix is compared with

the different segments of the longer helix, until all possible

combinations are considered. The result correlation is the

smallest of all possible correlations.

Comparing helixes of different lengths occurs frequently

when new releases need to be classified within the smallest
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Figure 3. Terrain map for the domain of the study, and sample contaminant cloud and detected trajectory. The location of the sensor receptors is also
shown.

possible time. Therefore although the emissions in the

library can be simulated for a long time, up to hours or

days, information on new releases is assumed to be available

only for few minutes. Furthermore it is not safe to assume

that the first temporal observation of the release corresponds

to its origin, since it might have avoided previous detection

due to wind patterns or lack of proper sensor measurements.

Because such assumption cannot be made, the shorter tem-

poral observation, which corresponds to the new accidental

release, is compared to all helixes in the library at all times,

and not just to their origins.

Once a degree of correlation between the helixes is calcu-

lated, the classification calculations are based on threshold

(T ) and tolerance parameters (τ ). The tolerance range,

specified by the τ parameter, is the percentage by which

the degree of match can fall below the top degree of match

threshold T and be selected as an alternative decision. If

a helix matches more than one in the database within the

tolerance range, then corresponding decisions are presented

as alternative decisions. The acceptability threshold is de-

fined as the minimum degree of match for which a specific

classification decision will be made. If all degrees of match

fall below the acceptability threshold, “no decision” (or

“don’t know”) is returned.

The classification mechanism used is designed to go

beyond the typically used predictive accuracy measure that

assumes that for each testing event, the system assigns

a single classification decision that is either correct or

incorrect. This single-decision schema makes the evaluation

of a method simple, but is not adequate for many real-life

problems. The helix approach assumes that it is better to

give a few alternative answers (“multiple decisions”) that

include the correct decision, or to give no definite answer

(“no decision”), than to be forced to give just one answer

and be incorrect.

The idea of producing “multiple decisions” or “no-

decisions” is implemented by computing degrees of match

between a new helix, and the library of helixes, and,

depending on the distribution of these degrees, computing

the final classification decision. Consequently, an evaluation

of the performance consists of not just one number, but

several numbers, each with a simple cognitive interpretation.

Specifically, the output includes the following measures:

• Predictive Accuracy-S (PS)

• Predictive Accuracy-M (PM)

• Ambiguity-S (AS)

• Ambiguity-M (AM)

The predictive accuracy scores are success metrics, ex-

pressing our success in finding the correct response. The

ambiguity parameters are scores of the uniqueness of the

responses, thus describing how easy it is for an analyst to

evaluate the results presented to him/her.

Predictive Accuracy-Single refers to the percentage of

correct classifications which receive the highest degree of

match. If more than one candidates have tied for the highest

matching score and the right response in included in this

group, the answer is considered correct. Thus this metric

is a variant of the standard measure of predictive accuracy

when multiple top matches are returned. In testing situations,

when a helix is compared to a set of candidates that includes

itself (e.g. during cross validation), it is expected that PS will

always be 100%, assuming that the matching algorithm is

fundamentally correct.

Predictive Accuracy-Multiple applies to situations where

the response to a classification returns not only the highest

score, but all results that exceed threshold T but are within
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tolerance τ of the best match. In these situations, PM

denotes the percentage of having the correct classification

within the returned matches. Thus, the Predictive Accuracy-

M reduces to Predictive Accuracy-S when both T and τ are

0. All helixes that return degrees of match both above the

threshold and within the tolerance of the highest degree of

match attained by the new helix are returned as possible

classifications.

The ambiguity metrics account for cases of multiple

decisions. Ambiguity is calculated both for PS and PM. It

is possible that even in the PS case the answer may include

more than one choice, namely if two or more decisions tie

for the highest degree of match. The ambiguity metric is

defined as log(1/e) where e is the number of events that are

returned. Accordingly,ambiguity is equal to 0 when only one

solution is chosen, and its absolute value increases with the

number of returned alternative solutions. AM reduces to AS

when τ = 0.

III. RESULTS

We simulate a network of ground sensors distributed over

our area of interest (See Figure 3) and record concentra-

tion measurements at these locations over different time

instances. In this manner we simulate the measurements

of a sensor network distributed in the DC metropolitan

area. The concentration field is then reconstructed using

only the measurements at these locations. In addition to

the simulated sensor positions, Figure 3 shows the study

domain, a sample contaminant cloud at the end of its 60-

minute path, reconstructed from sensor measurements, and

the track of its center during this 60 minute period. At

various time instances we can reconstruct the instantaneous

record of the concentration fields from the sensor measure-

ments. By analyzing these records we generate the trajectory,

average concentration and speed of each release and encode

this information into spatiotemporal helixes as presented

in Section II-B. These 500 simulations form a library of

atmospheric releases for our area of interest.

To assess the performance of the proposed methodology,

cross correlation values were computed between all helixes

in the libraries. Therefore each helix is compared to itself,

and to all other 499 helixes. Therefore, in order to achieve

high accuracy and low ambiguity, each helix must obtain

the highest correlation when matched only with itself. Our

particular interest is to assess how well we can predict

the future evolution of a specific emission by comparing

it during its initial stages to our library of 500 events.

Accordingly we performed tests using various helix sample

sizes, ranging from 10% (corresponding to using sensor data

collected during the first 6 minutes only of an emission

event) to 100% (corresponding to using sensor data collected

during the complete 60-minute emission event). The tests

were designed to test for how long an emission must be

observed in order to be correctly classified. Ideally, a release

is unambiguously recognized in the shortest possible time.

The classification parameters used are T=0 and τ=0.1.

In all cases the accuracy is 100%, as the correct answer is

always included among the solutions. However, the ambi-

guity varies depending on both the size of helix and by the

size of the threshold τ . Figure ??a,b summarizes the average

number of solutions for τ=0 (top) and τ=0.1 (middle) for

different helix sizes. Ambiguity metrics (AS and AM) are

computed as log(1/e) where e is the number of events that

are returned. For τ = 0, when only a small part of the helix

(105) is used, we have on the average 25 matches returned as

events that are potentially similar to our observed samples.

Of these 25, one is the correct answer, and the other 24 are

incorrect solutions. Therefore, although the correct answer is

among the solutions, the result has an ambiguity of log(1/e)=

-1.398. Similarly, for τ=0.1, when only 10% of the helix is

used, about 250 helixes are identified as potentially similar to

our sample, yielding to an ambiguity of -2.40. In both cases,

the ambiguity is drastically reduced with longer sample

measurements. Figure ??c shows τ= 0 as a function of helix

size. The plot represents the distribution of classifications for

the 10%, 30%, 60% and 90%. When longer helixes are used,

the distribution of alternative solutions also varies greatly.

In particular, there is always about 5% of the helixes that

perform considerably worse than the average. This 5% of

events correspond to helixes which occurs with very variable

wind, lack very distinct features that can uniquely help the

classification.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a spatiotemporal methodology

for the analysis and visualization of atmospheric emissions

in a metropolitan area. The objective was to devise an

approach based on spatiotemporal analysis for the early

detection of potentially hazardous situations. We built a

library of 500 emission events using numerical transport and

dispersion models, under various atmospheric conditions and

from multiple potential emission sources in the Washington

DC metropolitan area. This library comprises representative

emergency events that may represent natural or man-made

hazardous emissions. To represent and analyze the events of

this library we used the model of the spatiotemporal helix,

which provides concise summaries of complex spatiotem-

poral events. We demonstrated successfully the ability to

compare emerging situations to our library of events, and

thus predict their future evolution of evolving events.

In a practical application we expect analysts to go over

a library of events like the one we generated, and identify

in it the ones they consider semantically important (e.g. due

to their path crossing points of interest, or due to their high

density levels). Developing events can then be compared

to that library using the methodology we presented in this

paper, and provide early warning for events of interest. Our
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experiments addressed the accuracy and ambiguity of the

matching technique (and thus of the corresponding early

warning system) and the results are very promising. Even

though we considered a specific type of application in

this paper, namely atmospheric emissions, the approach is

application-independent and thus can be used to model and

analyze any other event that has an evolving spatiotemporal

footprint (e.g. flooding, wildfire), especially as they are

captured in a geosensor network.

Although the method was presented in the framework of

an urban environment, the same method can apply to atmo-

spheric emissions at different scales, including mesoscale

and synoptic scale.
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