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a b s t r a c t

The characteristics of an unknown source of emissions in the atmosphere are identified using an
Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and
a Gaussian plume model. The AES methodology selects an initial set of source characteristics including
position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is
performed. The error between the simulated concentrations from the tentative source and the observed
ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source
characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards
the real source.

The proposed methodology was used to identify the source characteristics of 12 releases from the
Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very
unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical
ES and a Monte Carlo (MC) method which were used as benchmarks.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric contaminant hazards typically include traffic
emissions, forest fires, volcano ash plumes, and intentional or
accidental releases of toxic chemical, biological, or radiological
agents. An unknown source of emissions can be effectively identi-
fied by source detection algorithms, which in general can be
divided in two categories: backward and forward simulation
techniques. Backward techniques are based on a transport and
dispersion simulation in the reverse direction (i.e., from the
receptor to the source) and may include Kalman filtering, adjoint
and tangent linear models, and variational data assimilation
(Rao, 2007). Instead, forward techniques perform multiple trans-
port and dispersion simulations iteratively from different candidate
sources, and compare the resulting concentrations to the available
measurements. The algorithms are designed to find the character-
istics of the source that minimize the error between simulated and
measured concentrations. These methods can be used with any
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type of dispersion model, can be implemented independently of
the amount and type of available data, and can be applied to non-
linear processes as well. In this paper we will be using a forward
simulation technique.

The simplest implementation of the source detection forward
simulation technique employs a canonical Monte Carlo (MC) algo-
rithm. The basic MC method may often converge to sub-optimal
solutions, especially when the initial guess is far from the real
source. This drawback is exacerbated for large domain sizes,
creating potential difficulties for large scale dispersion problems
(Cervone and Franzese, 2010). Additional difficulties associated
with MC algorithms include a significant number of possible design
decisions and parameters to be chosen such as, e.g., the annealing
schedule, the burn-in period, and various classes of variations or
proposals (Johannesson et al., 2004)

More refined source detection methods are obtained by
coupling MC or Markov chain Monte Carlo stochastic sampling
with Bayesian updating and inference methods, where probability
distributions for the parameters are iteratively updated. The
Bayesian Monte Carlo (BMC) methods are significantly more
powerful, overcome most of the limitations of the MC method, and
have been tested in several different settings. Sohn et al. (2002)
describe the application of a BMC method along with an indoor
airflow and pollutant transport model to the characterization of air
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Table 1
The ES(mþ l) algorithm.

Step 1: Randomly generate initial population of mþ l candidate solutions
Step 2: Evaluate each solution in the population
Step 3: Sort solutions in decreasing order of performance
Step 4: Truncate the solution population to only m best (parents)
Step 5: If termination criteria met, exit, reporting best (first) parent
Step 6: For each of the m parents, generate l/m offspring and add

to the population
Step 7: Resume with Step 2
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pollution sources in a building. Johannesson et al. (2004)
successfully apply BMC methods to a set of synthetic data to
reconstruct source location, release rate and start time. Lundquist
et al. (2005) apply BMC methods to designing more accurate and
cost-effective sensor networks. The study focus on the sensitivity
of a source location algorithm to different sensor network config-
urations in terms of number of sensors, detection sensitivities,
false-alarm rates, frequency of data collection and sensor detection
range. Neumann et al. (2006) and Chow et al. (2006, 2008) apply
the BMC approach of Johannesson et al. (2004) to the source
characterization of urban dispersion problems at building scales.
Senocak et al. (2008) simulate dispersion using an analytical
Gaussian plume model and extend the BMC methodology
described in Johannesson et al. (2004) and Chow et al. (2006, 2008)
introducing a likelihood function that takes into account both zero
and non-zero concentration measurements, and which includes
random parameters estimated using data and prior probabilities to
avoid tuning.

Delle Monache et al. (2008) build on the work of Johannesson
et al. (2004, 2005); Lundquist et al. (2005), Neumann et al.
(2006), Chow et al. (2008) and includes Markov chains, prior like-
lihoods, cooling-off procedures, adaptive steps, burn-in, sophisti-
cated convergence criteria, and tuned error parameters. Delle
Monache et al. (2008) were able to locate with remarkable accu-
racy the source of a real accidental release of radioactive material
on a continental scale, which was detected by only a few sensors,
using a Lagrangian particle dispersion model to perform the iter-
ative forward transport and dispersion simulations.

An alternative approach is the forward source detection method
based on genetic algorithms (GA) (e.g., Holland, 1975; De Jong,
2008). Unlike Monte Carlo algorithms which maintain one candi-
date solution, GA maintain populations of candidate solutions. GA
are thus likely to be less affected by ill initial conditions and more
adept at escaping premature convergence to local optima. The
promise of the canonical GA as initially introduced by Holland
(1975) was that they would be problem- and domain-indepen-
dent. For this reason, real-valued variables were encoded using
a binary representation. Standard genetic operators afforded vari-
ation by means of bit-flip mutation and crossover at either bit or
gene boundary. However, such implementations suffered from
poor performance due to the limited precision with which the
binary representation encodes real values and, in no lesser
measure, due to disruptive effects induced by standard genetic
operators. In contrast, Evolutionary strategies (ES) were developed
specifically for continuous domain optimization (Rechenberg,1971;
Schwefel, 1974). This characteristic makes them particularly suited
to the source detection problem, where real-valued attributes are
most common. In recent times, GA and ES converged (De Jong,
2008): it is quite common now to encounter GA operating on
real-valued parameters such as the continuous parameter GA
described in Haupt (2005), Haupt et al. (2007), Allen et al. (2007)
and Long et al. (2010), as well as ES with parallel search streams
and even crossover operator (e.g., De Jong, 2008).

For example, a continuous parameter GA was used in the
context of a source apportionment exercise (Haupt, 2005); coupled
with a Gaussian plume model in a source characterization problem
using synthetic data as receptor data (Haupt et al., 2007; Allen et al.,
2007); and to assess the sensitivity of a source detection method to
the number of sensors (Long et al., 2010). In all these applications,
the evolutionary approach performed well, demonstrating its
suitability as optimization technique. A variant of the evolutionary
algorithm approach was proposed by Cervone et al. (2010), where
new candidate solutions were created through a reasoning process
guided by machine learning, rather than through the Darwinian
operators of mutation and crossover.
In this paper we present an implementation of an Adaptive ES
(AES) methodology to identify the characteristics of a source of
atmospheric emissions. Wewill employ the AES method to find the
source characteristics of several releases from the Prairie Grass
controlled field experiment (Barad, 1958). The releases were
selected so as to sample all atmospheric stability classes. The
algorithm was tested against the results obtained by a simple MC
program and by a traditional basic ES, which represent baseline
methods used as benchmarks.

The methodology and details on the algorithms used are shown
in Section 2. Section 3 discusses the prairie Grass experiment and
the Gaussian plume model used in the experiments. Section 4
describes the numerical experiments performed and presents the
comparative study.

2. Methodology

The methodology presented in this paper is based on a class of
evolutionary algorithms called Evolutionary strategies
(Rechenberg, 1971; Schwefel, 1974). While evolutionary algorithms
in general are heuristics based on biologically inspired iterative
processes, the Evolutionary strategies (ES) address continuous
parameter optimization problems in particular. Formally, if n is the
number of optimized parameters pi, and Di are their domains of
interest, then the evolutionary algorithm attempts to minimize
a goal function f(p1:n).

Central to the terminology of an evolutionary algorithm is the
concept of potential solution, or candidate solution. Each solution
contains a value for every one of the optimized parameters pi, as
well as values for meta-parameters if any. Like all evolutionary
algorithms, ES maintain a population of potential solutions and
attempt to improve on it iteratively. The particular flavor used in
this paper is known as ES(mþ l) in which m current solutions act as
parents and are used to produce l offspring that compete with their
parents for survival. Table 1 gives the outline of this algorithm. At
each iterative step, only the best m solutions (parents and offspring)
are maintained, the rest being discarded.

Producing offspring from parents involves cloning, followed by
the application of a perturbing (mutation) operator that induces
minor stochastic variation. When optimizing on a continuous
domain, most of the time a Gaussianmutation is used. The standard
deviation of this operator, the meta parameter s, tunes the degree
of variation induced by the operator. One of the most delicate
aspects is quantifying and controlling the magnitude of the
stochastic variations. On a few standard search landscapes,
Rechenberg (1971) formally proved the one-fifth rule, of which
a more modern and relaxed form is as follows. If the ratio of
offspring improving on their parental performance is less than 1/5,
then s should decrease; otherwise s should increase. This rule has
been empirically shown to performwell on many other landscapes,
so it is still used in some of its modern incarnations.

In the case of multi-dimensional optimization, Schwefel (1974)
introduced a mechanism that affords each dimension, corre-
sponding to one parameter, a separate meta parameter s that is
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allowed to vary independently of other parameters. The one-fifth
rule changes in such a way that it no longer indicates the direction
of modifying the s meta parameters, but merely a weak bias of the
change. Specifically, if si are all the variance parameters, r is the
ratio of offspring improving on their parental fitness, and N(0, 1) is
a random variable with normal distribution, of mean zero and
standard deviation 1, then the updating rule is:

b ¼ Nð0;1Þ þ gðr � 0:2Þ (1)

si)sie
a½bþNð0;1Þ� (2)

where a¼ 0.2 and g¼ 5 are modulating parameters empirically
chosen. Updating the optimized parameters pi follows as

pi ¼ pi þ Nð0; siÞ (3)

with the understanding that pi will be constrained to the domain of
interest Di.

The process of randomly generating a solution in the initial
population consists of assigning to each of the optimized parame-
ters pi random values uniformly sampled from Di. The global
parameters si are initialized to 1/6 the size of Di.
2.1. Monte Carlo simulation

Monte Carlo methods represent a family of optimization tech-
niques where many potential solutions are stochastically generated
and tried. This principle is applied to generating many starting
points for a ES(1þ1). Note that ES(1þ1) is mostly a new name for
an algorithm also known as stochastic hill climbing (Russell and
Norvig, 1995, p. 115). The only significant addition to hill climbing
is the use of the one-fifth rule that acts as a self-adaptive mecha-
nism to speed up convergence. After every 100 births the ratio of
offspring improving on parental performance is computed and the
meta parameters si are updated.

The ES(1þ1) process used in this paper iterates for 1000 steps and
then is restarted fromanewstochastically generated point. The restart
aspect is salient because a greedy heuristic, while quickly convergent
to an optimum, is also verymuchprone to identifying a local optimum.
The restarting process mitigates this weakness and affords greater
chances to pinpointing the global optimum. This heuristic is hereby
called aMonte Carlo simulation because the exploratory power of this
variant stems from the Monte Carlo principle of stochastically gener-
ating multiple starting points. As detailed in the introduction, more
advanced and effective methodologies based on Bayesian inference
have beendeveloped and successfully implemented (e.g., Johannesson
et al., 2004; Lundquist et al., 2005; Delle Monache et al., 2008). In this
paper, we are interested only in the most basic implementation as
a reference benchmark for comparison.
2.2. Evolutionary strategy algorithm

A different strategy of reducing the chance of convergence to
a local optimum is the use of parallel search. This paper analyzes
a canonical ES(10þ 90) with deterministic parental selection: each
parent produces the exact same number of l/m¼ 9 offspring. The
values of m¼ 10 and l¼ 90 are empirical. The same mechanism of
adapting the meta parameters si according to the one-fifth rule
every 100 births is used as in the case of Monte Carlo simulations. A
very basic implementation of a strictly canonical ES is used in this
study as a comparison benchmark. A comparison with more
sophisticated and powerful evolutionary algorithms (e.g., Haupt,
2005; Haupt et al., 2007; Allen et al., 2007) is outside the scope
of this paper.
2.3. Adaptive evolutionary strategy

Other than the one-fifth rule technique, there is the possibility
of evolving the meta parameters si independently and along with
the actual parameters under optimization. This heuristic differs
from the canonical ES in that the process of perturbing a current
solution first alters the si encoded in the solution itself, and then
uses them to alter the actual optimized parameters using equations
(1)e(3). Unlike the case of canonical ES with the one-fifth rule,
there is no global set of si, as each solution has and uses its own
copy.

The intuition behind this adaptive mechanism is that for a solu-
tion to perform well (i.e., be better than other potential solutions
generated) it needs to have been generated both from a good
combination of optimized parameters and using an adequate set of
meta parameters. Furthermore, this solution will pass on to its
offspring (with variation) both its own good combination of opti-
mized parameters and a good working set of meta parameters.

The same m¼ 10 and l¼ 90 parameters were used as in the case
of canonical ES. The g(r� 0.2) term in equation (1) is always zero in
this case.

3. Dispersion experiment and simulations

3.1. Prairie grass experiment

The search algorithms are applied to identify the characteristics
of the source in the Prairie Grass field experiment (Barad,1958). The
experiment consisted of 68 consecutive releases of trace gas SO2 of
10 min each from a single source. The mean concentration was
measured at sensors positioned along arcs radially located at
distances of 50 m,100 m, 200 m, 400 m and 800 m from the source.
The number of available concentration samplers is not constant in
all experiments, because only sensors that recorded values above
a minimum threshold were considered reliable. The Prairie Grass
dataset includes detailed information on the atmospheric condi-
tions at the time of each release. It is then possible to classify each
experiment according to Pasquill’s atmospheric stability classes
(Pasquill and Smith, 1983; Hanna et al., 1990). The experiments
were conducted over all stability classes, ranging from very
unstable (class A) to neutral (class D) to stably stratified atmo-
sphere (class F). Note that the atmospheric stability strongly affects
the characteristics of the concentration field. In unstable atmo-
sphere spread is enhanced, with lower ground level concentrations,
whereas stable atmosphere determines narrower plumes, and
higher ground concentrations.

3.2. Gaussian plume model

The dispersion simulations are performed using a Gaussian
reflecteddispersionmodel,whichpredicts themeanconcentrationCp
at a location x, y and z generated by a source located at xs, ys, and zs as:

Cpðx; y; z; xs; ys; zsÞ ¼ Qgygz

2pU
h
ðs2s þ s2yÞðs2s þ s2z Þ

i1=2 (4)

with

gy ¼ exp

"
� ðy� ysÞ2
2
�
s2s þ s2y

�
#
; (5)

gz ¼ exp

"
� ðz� zsÞ2
2
�
s2s þ s2z

�
#
þ exp

"
� ðzþ zsÞ2
2
�
s2s þ s2z

�
#

(6)



Table 2
Relevant characteristics of the 12 Prairie Grass experiments considered in this study (left panel), along with absolute errors D in the source characteristics identified by AES. For
any variable x, Dx¼ xobs� xpred. Averages over the 12 experiments of the results obtained by AES, ES and MC are also reported at the bottom.

Exp. ID j q (deg) U (ms�1) Q (gs�1) DD (m) Dss
2 (m2) DQ (gs�1) Dq (deg) NRMSE

15 A 209 2.90 95.5 39.67 5.88 91.84 �4.56 0.47
47 A 243 3.02 103.1 9.18 0.00 93.81 3.33 0.46
2 B 100 1.74 83.9 60.45 0.00 116.10 56.25 1.35
7 B 188 4.02 89.9 73.02 0.00 110.10 �81.78 2.08
5 C 176 5.15 77.8 16.63 0.00 42.65 �1.02 0.68
8 C 184 4.06 91.1 8.58 1.69 20.28 1.47 0.53
11 D 184 6.77 95.9 14.47 0.00 24.97 �0.16 0.28
22 D 176 6.39 48.4 16.80 2.00 16.88 �5.02 0.27
18 E 187 2.68 57.6 14.71 0.04 -2.66 �5.70 0.45
68 E 174 2.19 42.8 7.96 2.06 13.83 �0.38 1.04
32 F 171 1.60 41.4 35.62 2.60 9.22 0.94 0.45
58 F 178 1.65 40.5 38.53 1.99 3.04 2.47 0.81
Avg. AES 27.97 1.36 45.01 �2.85 0.74
Avg. ES 71.06 3.62 84.07 2.41 2.12
Avg. MC 32.93 3.12 86.99 4.40 1.63
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where Q is the mass emission rate, U is the wind speed, sy(x, xs;j)
and sz(x, xs;j) are the crosswind and vertical dispersion coefficients
(i.e. the plume spreads) where j describes the atmospheric stability
class (i.e., j¼ A to j¼ F), and ss

2¼ sy
2(xs, xs, j)¼ sz

2(xs, xs, j) is
a measure of the area of the source. The dispersion coefficients
were computed from the tabulated curves of Briggs (Arya, 1999).
The result of the simulation is the concentration field generated by
the release along an arbitrary wind direction q.

In this study, U and j are assumed to be known, and their values
set according to the observations reported in the Prairie Grass
dataset. Each candidate solution is thus comprised of the 6 vari-
ables xs, ys, zs, ss, Q, and q.
Fig. 1. Evolution of NRMSE, Dss, DQ, jDqj, DD, DX, DY, and DZ averaged over all the releases a
and MC (dashed line).
3.3. Error function

Central to every evolutionary algorithm is the definition of the
error function, often called fitness or objective function. The error
function evaluates each candidate solution quantifying the error
between the observed concentrations and the corresponding
simulated values. This information is used by the search algorithm
to drive the stochastic iterative process.

The definition of error, or uncertainty, in the model predictions
is not univocal, and depending on the case, different measures of
accuracy of a dispersion calculation can be adopted (Hanna et al.,
1993). For example, the error may refer to the comparison of
s functions of the number of iterations obtained with AES (solid line), ES (dotted line),
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Table 3
Summary of performance gains of AES over ES and MC for each release. The
performance gain over ES and over MC for each variable is defined as the best value
achieved by ES and MC respectively, divided by the best value achieved by AES.

ID D ss
2 Q q NRMSE

ES
AES

MC
AES

ES
AES

MC
AES

ES
AES

MC
AES

ES
AES

MC
AES

ES
AES

MC
AES

15 0.94 0.73 0.67 0.64 0.92 0.96 0.97 1.00 2.59 2.04
47 3.55 2.47 5.62 4.38 0.87 0.95 0.96 0.98 2.30 1.72
2 0.88 0.92 5.24 3.71 0.87 0.95 0.99 1.01 1.06 1.03
7 1.05 1.03 6.39 5.95 0.90 0.96 1.85 1.79 1.05 1.03
5 1.13 1.14 3.78 3.74 1.34 1.38 1.00 1.00 1.68 1.59
8 3.62 1.55 1.30 1.43 1.36 1.55 0.99 1.00 2.45 2.47
11 2.15 1.28 3.27 3.14 1.29 1.45 1.01 1.00 6.68 4.43
22 1.94 0.98 1.54 1.18 1.98 2.10 1.00 0.99 9.19 6.89
18 3.97 1.83 3.65 3.71 2.55 2.36 0.92 1.00 6.33 4.20
68 7.61 3.03 1.38 1.39 2.27 2.39 1.03 1.00 2.66 1.97
32 5.10 1.42 1.43 1.30 2.94 2.58 1.14 1.04 7.18 4.82
58 6.19 1.15 1.74 1.30 3.71 2.65 0.87 1.00 4.84 3.36
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simulated and observed peak concentration over the entire sensor
network, regardless of time and location of occurrence of the peak.
In other cases, the only realistic expectation is to calculate the
predictions that fall within a certain factor (e.g., 2 or 10) of the
observations. For this reason, inter-model comparison studies
always include several performance metrics (e.g., Chang et al.,
2003, 2005; Chang and Hanna, 2004).

In this study, we will use the Normalized Root Mean Square
Error (NRMSE), which was shown to be a suitable metric for source
detection algorithms in a comparative study of characteristics of
several error functions (Cervone and Franzese, 2010). The fitness of
each candidate solution is computed using the NRMSE between
observed and simulated concentrations:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Co � Cp

�2
Co,Cp

vuut (7)

where Co is each sensor’s observed mean concentration, Cp is the
corresponding simulated value, and the bar indicates an average
over all the observations.
)

ΔQ (g/s)

4 5 6 0 20 60 100 −80 −40 0 40

−8
0

−4
0

0
40

Δθ (deg)

experiments, where each variable is plotted against all others.
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4. Results

The search methodologies are applied to find the characteristics
of the sources of 12 Prairie Grass tracer release experiments, two for
each atmospheric stability class. The search space was defined as
follows: x and y both range from�4 km to 4 km, defining an area of
64 km2 centered at the source; z ranges from 0 to 200 m; Q from
0 to 200 gs�1, and q from 0 to 360 degrees. The distance from the

source is defined as D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðy� ysÞ2 þ ðz� zsÞ2

q
. Since

the size of the source was negligible compared to the plume spread
over the sensors, the emissions can be assumed to be released from
a point source, and the source size was assumed to be ss

2¼1 m2.
For each of the 12 experiments, a series of 30 runs was per-

formed by each of the three algorithms used, i.e., Adaptive Evolu-
tionary Strategy (AES), Evolutionary Strategy (ES), and Monte Carlo
(MC), totaling 1080 runs. For each set of 30 runs, all parameters
were kept constant except the random seed, which is responsible
for the generation of the initial set of candidate solutions and for
guiding the stochastic search.

Table 2 summarizes relevant characteristics of the field disper-
sion experiments used in this study, along with the results in terms
of absolute errors obtained by AES. For any variable x, the absolute
error D is defined as Dx¼ xobs� xpred. As reported in Table 2, AES is
able to detect the source location within an average of about 30 m
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Fig. 3. Contour plot of concentrations for the Prairie Grass experiments with stability cla
observations; the right column shows the corresponding field generated by the Gaussian mo
at the bottom right is the same in all the graphs.
from the real location, with a maximum error of about 73 m in the
case of experiment 7, which was conducted in unstable conditions
(i.e., stability class B). The two experiments conducted under
atmospheric stability class B appear to display the largest errors for
all variables. This may be due to a combination of dispersion model
inadequacy and poor data quality. For example, most of the
experiments in the stability class B did not pass quality control and
were not included in the dataset reported by Hanna et al. (1990).
The emission rate Q is captured with an average error of about
45 gs�1, or within about a factor 2 of the real Q. The wind direction
is generally predicted with good accuracy, except for the cases in
stability class B, which will be discussed below. NRMSE is also in
general quite low, showing that part of the errors reported in the
table are due to the multi-variable nature of the solution, which
admits lowNRMSE for specific combinations of the variables within
a finite range. Overall, the results indicate the suitability of the
Gaussian reflected model for this application. Table 2 also reports
the results averaged over the 12 experiments obtained by AES,
along with ES and MC, which are in general less accurate.

A more complete comparison between the algorithms is shown
in Fig. 1, which shows the evolution of NRMSE, Dss, DQ, jDqj, DD, DX,
DY, and DZ as functions of the number of iterations for AES, ES, and
MC. The results are averaged over all the releases, namely the
averages are taken over 30 runs performed for each release, over all
releases. Each run of the algorithm differs only in the random initial
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del [Equation (4)] using the source characteristics identified by AES. The scale indicated
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population. Fig.1 (top-left panel) shows that convergence forNRMSE
is fasterwithAES, namely on average AESdetermines a solutionwith
a smaller error than both ES and MC by a wide margin in a smaller
number of evaluations.MC is also seen to outperformES (i.e., smaller
error in a shorter time). Note that all curves start with NRMSE well
above the range of the vertical axis. The first few points have been
omitted in order to reduce overplotting. Fig. 1 also shows that DQ
calculated by either ES andMC is about a factor of 2 larger than AES.
The other variables have in general better accuracy with AES, with
the exception of q, which displays a smaller errorwhen calculated by
MC (the AES jDqj is strongly influenced by release 7, which is an
outlier and will be separately analyzed below). AES slightly outper-
forms MC in the estimation of D. (The best result of AES is a solution
about 8 meters of the source). However, we emphasize that the
location of the source is only one of the characteristics identified by
the algorithm. A better localization of the source does not necessarily
correspond to a better solution, and to a smaller NRMSE. In other
words, a solution which predicts a shorter distance from the source
may display a larger error than a solution which predicts a larger
distance. This phenomenon is due to themulti-dimensionality of the
problem, where all characteristics of the source are simultaneously
optimized, leading to a multi-modal solution space, and also to
possible approximations in the dispersion model and errors in the
field observations.
Fig. 4. Contour plot of concentrations for the Prairie Grass experiments with stability cla
observations; the right column shows the corresponding field generated by the Gaussian mo
at the bottom right is the same in all the graphs.
Table 3 provides a summary of the performance gains of the AES
algorithm over ES and MC obtained for each release. The perfor-
mance gain over ES and over MC for each variable is defined as the
best value achieved by ES and MC respectively, divided by the best
value achieved by AES. For example, the NRMSE performance gain
over ES and over MC is defined as the best NRMSE (i.e., the
minimum error) achieved by ES andMC respectively, divided by the
best NRMSE achieved by AES.

AES achieves consistently a lower NRMSE, followed by MC: the
average NRMSE for AES is 0.74, while the average NRMSE for ES and
MC are 1.63 and 2.12 respectively (as reported in the two bottom
rows of Table 2). The average NRMSE performance gain for AES is
thus 2.86 over ES, and 2.2 over MC.

In terms of distance D, AES achieves better results in most of the
12 releases, and in general MC outperforms ES. The performance
gains for D averaged over all releases of AES over ES and MC
corresponds to 2.54 and 1.17 respectively.

The comparative advantage for source location and emission
rate identification of AES is more pronounced for increasing
atmospheric stability (i.e., from class A to F), which corresponds to
smaller plume spread and consequently to fewer sensors sampling
non-zero concentration. This may be an indication that the AES
search strategy is less sensitive to the amount of relevant infor-
mation input into the model.
sses D, E, and F. The left column of each panel shows the field reconstructed from
del [Equation (4)] using the source characteristics identified by AES. The scale indicated
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Fig. 2 shows a pairwise plot generated by AES comparing the
results of all 12 experiments performed, where each variable is
plotted against all others. The pairwise plots are useful to detect
inter-variable correlations. The plot shows that NRMSE is a good
predictor for D, because a correlation can be detected between the
two variables. The predicted wind direction is relatively very
accurate for most cases over the range of values of NRMSE. The two
cases with larger errors in the predicted wind direction correspond
also to the highest NRMSE values. A consistent behavior is observed
when comparing the predicted wind direction with all other vari-
ables. This indicates that over- or under-estimating the wind
direction can lead to very large NRMSE.

Figs. 3 and 4 show the observed and predicted mean concen-
tration field for the 12 experiments considered. The plumes were
reconstructed using the Akima spline interpolation algorithm
(Akima, 1978). The observed concentration field was computed by
interpolating the values measured at the sensors, which are rep-
resented by full dots. Note that the concentration footprint
decreases as stability increases, consistent with the notion that
stability inhibits dispersion. In our calculations a smaller footprint
implies a smaller number of sensors measuring concentrations, and
therefore a potentially higher error in the solution. In general,
source location, plume direction and concentration field are
reproduced accurately, except for experiment 7, where the pre-
dicted wind direction differs by almost 90 degrees from the
observations. An analysis of the anomaly of this case is useful to
elucidate the range of possible behaviors of the multi-parameter
solutions identified by the search algorithm.

Fig. 5 shows the concentration observed at each sensor for
Prairie Grass release 7, as a function of the sensor number. The
sensors are positioned along five concentric arcs, located at 50 m,
Fig. 5. Cross-wind profiles of concentration for Prairie Grass release 7, plotted as functions of t
100 m, 200 m, 400 m and 800 m from the source. Each arc is represented in one of the pane
numbers are sorted counterclockwise. Solid line: measured concentration; dashed line top
characteristics identified by AES; dashed line bottom figure: concentration simulated by Equ
100 m, 200 m, 400 m and 800 m from the source. In the figure, each
arc is represented in one of the panels which are indicated by
alternate white and grey background. For each arc, the sensor
numbers are sorted counterclockwise. The concentration simulated
by Equation (4) using the source characteristics identified by AES is
also plotted in the top figure using a dashed line; the concentration
simulated by Equation (4) using the source characteristics reported
in the Prairie Grass dataset is plotted in the bottom figure using
a dashed line.

The crosswind profile of concentration is tri-modal (this is espe-
cially visible at the two closest arcs, and is consistent with Fig. 3),
suggesting that the distribution of wind direction had a similar shape
and caused the plume to disperse unevenly. The ground measure-
ments are in fact concentrations over a fixed period of time, and as
such they reflect the spatio-temporal variation of the wind plume.
The multi-modal distribution is likely to be attributed to wind shifts
occurred during the experiments. This case illustrates the limits of
a simple analytical dispersion model such as the Gaussian plume
model. More complex simulations may provide a more accurate, and
possibly time-dependent estimate of q.

The theoretical concentration calculated by the Gaussian model
consists of a single peak much higher than any of the observed
values (Fig. 5, bottom). The poor agreement between the observed
and simulated values is responsible for a high NRMSE of 2.3. On the
other hand, the concentration simulated using the AES parameters
(including a wind direction off by about 90 degrees) shows a better
agreement, leading to a lower NRMSE equal to 0.9 (this value does
not correspond to NRMSE¼ 2.08 reported in Table 2, which is the
average over 30 runs). In other words, a simulated plume with
a wind direction off by about 90 degrees is a better fit (at least in
terms of NRMSE) than the theoretical plume.
he sensor number. The sensors are positioned along five concentric arcs, located at 50 m,
ls which are indicated by alternate white and grey background. For each arc, the sensor
figure: concentration simulated by the Gaussian model [Equation (4)] using the source
ation (4) using the source characteristics reported in the Prairie Grass dataset.



Fig. 6. Sensitivity analysis of NRMSE with respect to wind direction q for Prairie Grass
experiment 7 using the observed (solid line) and the AES-derived (dashed line) source
characteristics.
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Fig. 6 shows a sensitivity analysis of NRMSE with respect to
wind direction q for Prairie Grass release 7 using the observed (solid
line) and the AES-estimated (dashed line) source characteristics.
The NRMSE minima correspond to 188 degrees (roughly corre-
sponding to the observed plume direction in Fig. 3) using the
theoretical parameters, and 106 degrees using the AES-estimated
parameters. Note the sharp gradient of the AES-estimated NRMSE
as a function of wind direction, which explains the very small error
generally associated with the identified wind direction, as shown in
Table 2.

5. Conclusions

We used the Adaptive Evolutionary Strategy (AES) algorithm,
which is a modified version of a standard Evolutionary Strategy (ES)
algorithm, to identify six variables characterizing the sources of 12
releases from the Prairie Grass field experiment. The results indicate
the suitability of AES to be employed in problems of source char-
acterization of atmospheric releases. All the experiments were
repeated using a simple canonical ES algorithm, and a canonical
Monte Carlo (MC) simulation, which were used as benchmarks. The
experiments show that AES has achieved both higher accuracy
compared to the benchmarks and amuch faster rate of convergence.

In a multi-dimensional problem, the distance from the source is
only one of the variables optimized by the algorithm. Therefore
a lower error may not always correspond to a solution closer to the
source. Although the results are generally good, there are cases
where the error may be significant. The ground concentrations
generated by the reflected Gaussian model may not adequately
represent the plume, therefore creating an inconsistency between
themodel and the observations. This can be overcome byemploying
more sophisticated models. The function used to compute the error
between sensor measurements and simulated concentrations may
lead to convergence to local optima. TheNRMSE function is only one
of the possible feedback mechanisms which can be employed as
error function (Cervone and Franzese, 2010). It is possible that for
different problems other error functions could provide a better
feedback to the search algorithm. Finally, a certain amount of noise
is to be expected in all experimental data. The Prairie Grass exper-
iment provides good and reliable data, which have been found to
approach a Gaussian distribution, and thus can be accurately
modeled by a Gaussian plume model. However, there are of course
inconsistencies and departures from the predicted values, as
detailed in our discussion of release 7 and in Figs. 5 and 6.
In this study we performed 30 runs (each with a different initial
condition) for each of the 12 Prairie Grass releases considered. Each
run includes at least 106 evaluations and stops as soon as possible
after reaching this threshold. Typical run-time durations (on
a common Linux PC) for one source estimation, which includes 30
runs, are about 17 min for AES, 21 min for ES, and 17 min for Monte
Carlo. However, the codes were not specifically optimized for
performance (beyond standard compiler optimization) so the
straight execution times could be reduced. For example, the above
run-time values include significant amounts of input/output oper-
ations in order to display performance traces (e.g., best-so-far
solutions at intermediate times). If the sole final solution is of
interest, the computational times would be shorter.

Future work will concentrate on extending the methodology to
real episodes, as opposed to controlled field experiments, which are
typically conducted atmuch smaller scales. The challenges typically
presented by large-scale dispersion problems are the lack of
concentration data and meteorological observations, and the need
of sophisticated, and computationally expensive, numerical trans-
port and dispersionmodels. In this respect, the good computational
efficiency of AES may be a valuable factor.
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