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a b s t r a c t

A Monte Carlo algorithm is iteratively run to identify candidate sources for atmospheric releases. The
values of the ground measurements of concentration are synthetically generated by a benchmark
simulation of a Gaussian dispersion model. At each iteration, a Gaussian reflected plume model is
applied to compute the dispersion from a candidate source, and the resulting concentrations are
compared with the measurements at fixed points on the ground. Iterative algorithms for detection of
atmospheric release sources are based on the optimization of an error function between numerical
simulations and observations. However, the definition of error between observations and simulations
by an atmospheric dispersion model is not univocal. In this paper, the comparisons are made using
various error functions. The characteristics of different error functions between model predictions and
sensor measurements are investigated, with a statistical analysis of the results. Sensitivity to domain
size and addition of random noise to the measurements are also investigated.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Airborne toxic contaminants are transported by the wind and
dispersed by atmospheric turbulence. Potential atmospheric
hazards include industrial chemical spills, forest fires, intentional
or accidental releases of chemical, biological or radiological
agents. Risk assessment of contamination from a known source
can be performed by running multiple forward transport and
dispersion numerical simulations for different meteorological
conditions, and by analyzing the simulated contaminant clouds
with clustering and classification algorithms to generate prob-
abilistic risk maps (Cervone et al., 2008). However, often the
source is unknown, and must be identified from limited
concentration measurements observed on the ground.

There are currently no established methodologies for detecting
the sources of atmospheric releases, and there is a great degree of
uncertainty towards the effectiveness and applicability of existing
techniques. One line of research focuses on the adjoint transport
modeling (Pudykiewicz, 1998; Hourdin and Issartel, 2000), where
the advection–diffusion equation is inverted to establish source–
receptor relationships, which are then used to perform backward
simulations of the particles from the receptor to the source. These

methods assume a steady-state system and linear processes, i.e.,
do not include dispersion of chemically reactive agents (Enting,
2002). The optimization techniques employed to solve the
problem of inverse simulation often give a single solution, or
assume a Gaussian distribution to account for uncertainties. In
general, these techniques do not perform satisfactorily in the
cases of scarce and ill-distributed data, or of large amounts of data
from different sensors.

A more general and powerful methodology for source detec-
tion is based on Bayesian inference coupled with stochastic
sampling (Gelman et al., 2003). Bayesian methods aim at an
efficient ensemble run of forward simulations, where statistical
comparisons between simulated and observed data are used to
improve the estimates of the unknown source location (Chow
et al., 2006). The Bayesian approach is independent of the type of
model used, the type and amount of data, and can be applied to
non-linear processes as well. Senocak et al. (2008) use a Bayesian
inference methodology to reconstruct atmospheric contaminant
dispersion, pairing the Bayesian paradigm with Markov-chain
Monte Carlo (MCMC) to iteratively identify potential candidate
sources. A reflected Gaussian plume model is run for each
candidate source, and the resulting concentrations are compared
to ground observations. The goal of the algorithm is to minimize
the error between simulated and measured concentrations. Delle
Monache et al. (2008) paired the Bayesian inference process
with a Metropolis-Hasting MCMC. The dispersion simulations
are conducted using a Lagrangian particle dispersion model. The
methodology is applied to find the source characteristics for the
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1988 accidental release of radioactive material at Algeciras, Spain,
using the available ground concentrations measurements and
meteorological observations. The excellent results obtained by
Delle Monache et al. (2008) show the operational potential of
stochastic algorithms to identify the source characteristics of an
atmospheric release.

Haupt (2005), Haupt et al. (2007), and Allen et al. (2007) use an
evolutionary algorithms to maintain a population of candidate
solutions from multiple forward dispersion simulations, which
converge iteratively toward the real source. These algorithms are
also model- and domain-independent, but unlike traditional
Monte Carlo methods they maintain a population of candidate
solutions. They are designed to try to avoid local optima, and are
therefore particularly useful in problem domains with complex
fitness landscapes such as the source detection problem.

The statistical comparison between simulated and observed
concentrations which drives the iterations from tentative sources
is based on the definition of error, or uncertainty, in the model
predictions. The accuracy of a transport and dispersion simulation
depends on a number of factors, such as the scale of the
phenomenon, the accuracy of the source term, the availability
and representativeness of meteorological data, the coverage of the
sensor network and the averaging times of its measurements, and
the approximations inherent in the numerical model in order to
perform the simulation in a realistic time frame and with a
realistic data storage capability. Even in controlled field experi-
ments, model simulations can at best give only an approximate
representation of the evolution of a released contaminant. Several
measures of accuracy of a dispersion calculation are available
(Hanna et al., 1993). In some cases, only the peak concentration
over the sensor network is compared with the simulated peak
concentration, regardless of the time and location of occurrence of
the peak. In other cases, the only realistic expectation is to
calculate the predictions that fall within a factor 2 of the
observations, or even a factor 10. In order to determine whether
some model predictions are closer to the observations than
others, several performance metrics need to be considered (Chang
et al., 2003; Chang and Hanna, 2004).

The goal of this paper is an investigation of several error
functions that can be used to drive the iterative processes. Each
error function is a different definition of error between simulated
and observed concentration data at the receptors. We investigate
the responses of several error functions in a controlled environ-
ment, to ultimately help to identify the measures most suitable
for efficient optimizations. We use a Monte Carlo based algorithm
because of its simplicity and regularity, which allows to better
isolate the behavior of the different functions and to compute
statistics of their convergence (Metropolis and Ulam, 1949;
Hammersley and Handscomb, 1964; Cervone et al., 2000; Robert
and Casella, 2004; Rubinstein and Kroese, 2007; Delle Monache
et al., 2008).

Numerical experiments simulate domains of varying size, with
an increasing number of sensors, to assess the performance of
each function under different conditions. Different measures used
by the atmospheric modeling community to match simulations
with measurements were considered and analyzed varying the
domain size and the number of sensors, and adding artificial noise
to simulate the uncertainty associated with sensors measure-
ments. The algorithm has been tested with data from a release
conducted during the Prairie Grass field experiments of dispersion
(Barad and Haugen, 1958).

The paper is structured as follows: Section 2 discusses the
methodology used, including the different measures used, and
the stochastic search algorithm employed; Section 3 reports the
results of the simulations performed, and the statistical assess-
ment of the performance for each measure used; results for the

test run against the Prairie Grass data are also reported. Finally,
Section 4 summarizes the results obtained.

2. Methodology

The proposed methodology is based on numerical transport
and dispersion simulations, ground measurements, and a sto-
chastic Monte Carlo algorithm. We assume that the observations
of the actual concentrations of the atmospheric release at fixed
points in the space are available. A stochastic Monte Carlo
algorithm is used to iteratively refine an initial random guess by
varying the x0, y0 and z0 coordinates of the best solution found.
The score for each candidate solution is a metric of how well the
simulated concentrations match the synthetic observations. The
analysis of the metrics obtained from the different functions,
which indicate their performance, is the main goal of the paper.

2.1. Dispersion simulations

The dispersion simulations were performed using a reflected
three-dimensional Gaussian dispersion model (Arya, 1999). The
mean concentration c at a point (x, y, z) from a source located at
(x0, y0, z0) is defined by

c¼
Q
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where x, y and z are the coordinates in the alongwind, cross-wind
and vertical directions, respectively, U is the mean wind speed, sy0

and sz0 are the cross-wind and vertical source sizes. The
dispersion coefficients sy and sz were chosen assuming slightly
unstable atmospheric stability (Pasquill’s ‘C’ stability class) and
using Briggs’ curves for rural conditions (Arya, 1999):

sy ¼ 0:11ðx%x0Þ½1þ0:0001ðx%x0Þ(%1=2 ð2Þ

sz ¼ 0:08ðx%x0Þ½1þ0:0002ðx%x0Þ(%1=2 ð3Þ

Part of the difficulties in a source detection algorithm originate
from the large differences in concentration measurements around
and downwind of the source, compared to off-centerline loca-
tions. Since far from the centerline the concentration gradient is
small, local search methods might converge on local optima
failing to identify the global optimum solution, especially for non-
monotonic gradient or in the presence of errors. The error
function selected may play an important role in the correct
convergence toward the global optimum, as well as in the rate of
convergence.

2.2. Error functions

The quantitative comparison of synthetic observations and
predicted concentration is performed by applying statistical
measures of error. Each measure reflects different aspects of the
spatial distribution of mean concentration, and the appropriate
use of one measure rather than another depends largely on
the characteristics of the concentration field. The importance of
the information provided by a specific error measure is deter-
mined by factors such as the number of sensors, the number
of outliers, the range of measured and simulated values. We
considered the following functions: the fractional bias FB,
the normalized mean square error NRMSE, the geometric variance
VG and the correlation function CORR which have been often used
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in model validation exercises (e.g., Hanna et al., 1993; Chang et al.,
2003), the mean square error RMSE, two new functions defined in
Haupt et al. (2006) and Allen et al. (2007) which are referred to in
this paper as AHY1, AHY2, and a modified version of AHY2 which
is designated as AHY2MOD:

FB¼ 2
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""""

"""" ð4Þ
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where co and cs are the observed and simulated concentration at
the sensors, respectively.

FB is a normalized mean bias, therefore it is mainly a measure
of the systematic over- or underprediction of the simulations with
respect to measurements. FB is not a local measure. Very low
values of FB indicate good quantitative agreement in terms of
overall mean concentration, but provide no information on the
spatial accuracy of the simulation, as observed and simulated
values are not paired in space. For example, the simulation could
be out of phase with the observations. FB is strongly influenced by
occurrences of large over- or underprediction of high concentra-
tion measurements.

NMSE and VG are both expressed in terms of variances,
reflecting both systematic bias and relative random errors, which
are estimated on a linear scale by NMSE and on a logarithmic
scale by VG. NMSE is strongly affected by infrequently occurring
large overprediction or large observed outliers. By contrast, VG is
rather insensitive to both high and low values, and is in general
preferred when both predicted and observed values span several
orders of magnitude. However, note that VG is strongly affected
by extremely low values and is undefined for zero values, which
are not uncommon in dispersion modeling. Therefore, zero and
near zero values require a special treatment when evaluated using
VG. For example,the limit of detection of the samplers can be
assumed as minimum threshold. CORR is the standard correlation
function, which is based on mean concentration and variance.

We also analyzed the functions AHY1 and AHY2, defined in
Haupt et al. (2006) and Allen et al. (2007) as metrics for the cost
function of a genetic algorithm for source detection. AHY1 is a
variation of RMSE with a different normalization coefficient; in
AHY1 the normalization is over the average of co

2, whereas in
RMSE the normalization is over the square of the average co.
AH2MOD is a variation of AHY2, where the logarithm is taken
over the observed value, rather than observed value plus one.

The main difference is the value of the function value for very
small observed concentrations.

2.3. Monte Carlo

A specific Monte Carlo algorithm was implemented to identify
the optimal x,y and z location of the unknown source. Monte Carlo
methods are a class of computational algorithms that rely on
repeated random sampling to optimize a process.

The algorithm starts by generating a single candidate solution
(a.k.a. initial guess) within the boundaries of the search space, and
evaluates it according to one of the error functions defined in
Section 2.2. The iterative search continues by applying random
changes to the best solution found and evaluating the new
solution. Specifically, at each iteration the x, y and z variables of
the best solution are modified by a random increment. If the new
solution has a better score (i.e., a lower error) as determined by
the error function, it replaces the current best. The process
continues until a termination condition is met. The termination
condition was based on a fixed number of iterations. It is possible
to use different criteria such as, e.g., a fixed elapsed time, or a
solution with a given minimum error.

One of the central parameters governing the behavior of the
Monte Carlo search is the step-size random increment which is
used to generate new candidate solutions. The implemented
algorithm uses an adaptive step-size based on a fourth-order
polynomial curve. A different step-size is used for each of the
three dimensions x, y and z, as they have different domain ranges,
and require independent adjustments. The search starts with a
step-size equal to one-half of the domain for the particular
variable, and decreases as new candidate solutions are generated.
If after ten consecutive new solutions no improvement is made,
the step-size is set to increase for the future iterations. The step-
size then switches back and forth between increasing and
decreasing depending on the progress of the algorithm. The
rationale behind this behavior can be explained as switching
between exploration and exploitation of the search space. In the
first phases exploration of the space for potentially good
candidate solutions is important in order not to remain localized
to the area surrounding the initial guess. As the search progresses,
the algorithm refines the solution by making smaller adjustments.
If no new progress is detected, then either the perfect solution has
been found, or the algorithm has converged to a local optimum. In
order to sample new areas of the space, and potentially leave the
area of local optimum, larger steps are required and are possible
due to the adaptive step-size.

The Monte Carlo method was implemented using the R (www.
r-project.org) statistical environment. A typical run of 1000
iterations completes in under 4 min. Experiments were performed
on an Intel(R) Core(TM) 2 Duo CPU E8400 running at 3.00 GHz,
with a Linux operating system.

3. Results

The experiments were carried on four different domains
defined by their cross-wind extension W, along-wind extension
L, and vertical height H. The domain areas ranged from a
minimum of 0.5 km2 to a maximum of 200 km2. The same height
H¼100 m was used for all domains. For all simulations, Q¼0.1
kg s%1 and U¼2 m s%1.

First a synthetic concentration field was generated by running
the Gaussian model defined in Eq. (1) from a known source.
A second synthetic concentration field was generated by adding
noise to the original field as ci

0
¼gci, where g is a uniform random

process between 0 and 2, and ci is the original synthetic
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concentration at the sensor i. Fig. 1 shows the synthetic
concentration field generated by Eq. (1) for a source
sy0 ¼ sz0 ¼ 10 m, and with superimposed random uniform noise
for an area of 200 km2 with 100 sensors, represented by crossed
circles. The synthetic concentrations are an idealized
representation of an observed concentration field.

The source detection procedure consists of the following steps:

) Run the dispersion model (1) from a tentative source location.
) Compare the calculated concentration field with the synthetic

field at the sensor locations using one the error functions
defined in Section 2.2.
) Compare the current value of the error function with its value

at the previous iteration.
) Generate a new candidate source location by modifying the

best solution found.

Several sets of simulations were run with a different number of
sensors deployed in the domain, ranging from 4 to 2500. Details of
the individual domain configurations are reported in Table 1. The
number of sensors is important as they effectively determine the
amount of information available to the Monte Carlo algorithm.
It is therefore interesting to investigate the sensitivity of the
method to the number of sensors, and possibly to establish a
minimum threshold. The unknown variables optimized by the
Monte Carlo simulation are the x0, y0 and z0 coordinates of the
source. The additional parameters Q, sy0 , sz0 and U, needed to run
the model defined in (1) are assumed to be known.

A total of 8960 Monte Carlo simulations were performed to
study the effect of domain size, sensor density and noise. For each
combination of parameters, 20 simulations were performed to
analyze the robustness of the method, only varying the initial
random guess. By repeating the experiment multiple times with
different initial guess, it is possible to determine the overall
convergence of the algorithm, and its sensitivity to the initial
guess. The convergence is defined as the rate at which the
calculated solution approaches the real solution. The experiments
have been kept as ideal as possible in order to test the effects of
different error measures without the introduction of other factors.

Fig. 2 shows the execution of a single Monte Carlo simulation.
The bottom figure shows the error at each Monte Carlo iteration
according to the NRMSE function, which is the error function
selected to drive the optimization. The dark line represents the
minimum error obtained over all the previous iterations. The top
figure shows the evolution of the calculated distance from the
source as a function of the Monte Carlo iterations. The dark line
represents the evolution of the distance corresponding to the
minimum error found. Note that the distance does not decrease
monotonically, because smaller errors do not always correspond
to better solutions. This phenomenon is due to the three-
dimensional nature of the problem, where the x0, y0 and z0 are
simultaneously optimized, leading to a multi-modal solution
space. This implies that some solutions can have a smaller error
compared to solutions closer to the source. The curve for the best
solution found is consistent with the overall convergence trend of
the algorithm. We have found that the initial random guess plays
a major role in the convergence rate of the algorithm. If the initial
random guess is located in proximity of the boundaries of the
domain, the rate of convergence is much slower. Additionally,
if the random initial solution is generated in proximity of local
optima, the algorithm might fail to converge over the best
solution possible. This is one of the main disadvantages of the
Monte Carlo algorithm used in the experiments.

Fig. 3 shows an example of a trajectory converging toward the
best solution determined by the Monte Carlo algorithm using the
NRMSE error function. The figure illustrates the typical behavior
including an initial fast convergence in the x–y plane, followed by
slower and steady improvements in the z dimension. The contour
lines of the error surface for the NRMSE function, and the
projection of the trajectory on the x–y plane are also shown.

Experiments were performed to study the rate of convergence
and accuracy of the solution associated with:

) Different error functions.
) Domain size. (The vertical dimension has been kept constant.)
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Fig. 1. Concentration field generated by Eq. (1) for Q¼100 g s%1 and U¼2 m s%1,
for a source with size sy0 ¼sz0 ¼ 10 m, and with superimposed random noise for a
domain of 200 km2 with 100 sensors indicated by crossed circles. Side scale
represents logarithm of concentration.

Table 1
Summary of domain configurations used.

W (km) L (km) H (km) Number of sensors

0.5 1 0.1 4, 9, 16, 25, 100, 900, 2500
1 2 0.1 4, 9, 16, 25, 100, 900, 2500
5 10 0.1 4, 9, 16, 25, 100, 900, 2500
10 20 0.1 4, 9, 16, 25, 100, 900, 2500
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Fig. 2. Distance from source (in meters), and NRMSE error function (in log scale)
for Monte Carlo simulation as functions of number of iterations.
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) Number of sensors (density of sensors). For practicality, the
sensors have been assumed to be uniformly distributed
throughout the domain.
) Noise, by introducing a random error to the sensor measure-

ments.

Each experiment has been repeated with and without random
uniform error added to the synthetic ground measurements.

Fig. 4 shows the results for all sensor configurations tested for a
0.5 km2 domain (a and b) and a 200 km2 domain (c and d). The figure
shows the statistical results for all the experiments performed,
reported using boxplots (Mosteller and Tukey, 1977). Each
individual boxplot is the summary for the series of experiments
(20 runs). In each boxplot the horizontal black line shows the
median error achieved in the series, and the top and bottom of the
box are the 25th and 75th percentile (the lower and upper quartiles)
respectively. The top and bottom error bars (a.k.a. whiskers) are the
minimum and maximum errors achieved in the series of
experiments. Such plots are particularly useful to compare
distributions between sets of experiments. The figures on the left
column (a and c) show results for the synthetic concentration field
without added noise, the right column (b and d) shows results with
added noise. The results indicate that the presence of noise changes
drastically the convergence rate of the algorithm.

In particular, we found that for the case of small domain
without noise, all error functions determine comparable results.
All functions result in large errors (in terms of source location)
when four or nine sensors are used; the error is significantly
smaller for the cases of 16 or more sensors. Furthermore, little
difference in the convergence rate is observed with more than 16
sensors. In other words, using more than 16 sensors improves
neither the accuracy of the predicted source location, nor the
computational efficiency of the iterative process. Experiments for
large domain without noise are similar, with the exception of the
cases of very few sensors for the CORR, AHY2 and AHY2MOD
methods. The FB method is outperformed by all other methods.
For the case of small domain with noise, the number of sensors has
a major influence on the convergence rate. In all cases, increasing
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Fig. 3. Sample trajectory converging toward best solution (x0¼0, y0¼0)
determined by Monte Carlo algorithm using NRMSE error function. Contour lines
of NRMSE error surface, and projection of 3D trajectory onto x–y plane are also
shown.
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the number of sensors used in the experiments up to a maximum
of 2500 leads to significant improvement of the solution. VG and
AHY2MOD are consistently outperformed by all other error
functions, and are both quite insensitive to an increase in the
number of sensors. Note that the large errors for AHY1 show a
median which is consistent with the overall pattern, but a long
bar due to only a few experiments not having converged. In all
cases the source location is predicted with an accuracy of about
100 m.

For the case of large domain with noise, the number of sensors
does not have a major influence on the converge rate, with the
exception of the VG function. The experiments performed using
the VG function are also the only ones able to find a solution
within 50 m of the source.

Fig. 5 shows the results for all domain sizes tested for 25
sensors (a and b) and 2500 sensors (c and d). As in Fig. 4, the
graphs on the left column (a and c) show results for the synthetic
concentration field without added noise, the right column (b and
d) shows results with added noise.

We determined that increasing the size of the domain does not
play a major role in the convergence rate of the algorithm. In
particular, we found that for 25 sensors without noise all functions
performed similarly regardless of the domain size, with the
exception of FB, whose results are significantly worse as the
domain size increases. For the case of 2500 sensors without noise
an almost identical behavior is observed, with FB performing
consistently worse than any other methods. For 25 sensors with
noise an overall worse performance is found, with very few cases
converging within 100 m of the source. All functions except VG
are sensitive to the domain size, with errors up to 5 km for the

largest domain. For 2500 sensors with noise the overall error
increases with the domain size.

Although most functions exhibit the same trends, some
outperformed others under specific conditions. NRMSE and
AHY2 are good overall performers, achieving good results both
under very large and small domains, regardless of the presence of
measurement errors. VG outperforms all other functions for large
domains, especially with noisy observations. However, it is not a
good performer for small domains. The FB function is consistently
one of the worst performers throughout the experiments. This is
because it takes into account only the distribution of concentra-
tions, rather than their relative locations.

In a few instances, the general trend was disrupted by at least
one of the experiments not converging, or converging towards a
local optimum. This is a major weakness of the proposed stochastic
approach, and the reason why each experiment was performed
multiple times. Overall the method performed well, and the
statistical analysis of the convergence shows a predictable behavior.

A better understanding of the behavior of the error functions
can be gained by performing an analysis of their geometric
properties. We generated error function surfaces by successively
placing a tentative source at each point of the domain, and
calculating the corresponding value of the error function. The set
of values of the error function at all points forms a surface, whose
contour lines at z¼0 are plotted in Fig. 6. All functions were
normalized between 0 and 1. The real source is located at (x0, y0,
z0)¼(0, 0, 10).

) In general, at large distance from the source, the along-wind
gradient is stronger than the cross-wind gradient. Close to the
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Fig. 5. Error as a function of sensor density: (a) 25 sensors without noise; (b) 25 sensors with noise; (c) 2500 sensors without noise; and (d) 2500 sensors with noise.
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source the along-wind gradient is stronger only for AHY2MOD
and FB.
) AHY1 and RMSE are virtually identical. This is due to the two

functions differing only in the normalization coefficient. The
absolute values for the functions are indeed different.
) AHY1, RMSE, CORR and FB display local maxima and minima.

This can cause the algorithm to converge to an incorrect
solution. More sophisticated search techniques, such as
standard evolutionary algorithms (e.g., Goldberg, 1989) or
non-Darwinian evolutionary algorithms (Cervone et al., 2000,
2010) which perform simultaneous parallel searches, are less
likely to converge to local optima.
) NRMSE and AHY2 show a very distinct area of minima around

the source, and a sharp gradient in every direction, especially
in the cross-wind direction. Further analysis showed that the
Monte Carlo algorithm quickly converges towards the right y
location, while the optimization along x requires several
additional iterations.

3.1. Comparison with a field experiment

The method was applied to find the source location of a gas
released in controlled conditions during the 1956 Prairie Grass
field experiment (Barad and Haugen, 1958). Concentrations of SO2

trace gas released at ground level for 10 min were measured by
samplers radially located at distances of 50, 100, 200, 400 and
800 m. The Monte Carlo method was used to find the source
location for release 43, which occurred in slightly unstable
atmosphere (i.e., ‘C’ stability class). The error functions defined

in (4)–(11) were used. Table 2 shows the results in terms of
minimum distance from the source achieved, number of iterations
required to achieve the minimum distance, and their respective
standard deviations. Each series of experiments was performed 20
times varying only the initial guess. The minimum distance was
found using the AHY1 function, although with a higher standard
deviation. The smallest standard deviation for the distance was
observed using VG. As already observed for the synthetic case, the
FB function was the overall worst performer. In terms of number
of iterations, all functions performed comparably, with slightly
better results achieved using the AHY2MOD function, and slightly
worse using the RMSE function.

4. Conclusions

We implemented a specialized Monte Carlo algorithm for the
detection of the source of a localized continuous emission of an
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Fig. 6. Contour lines of error functions AHY1, AHY2, AHY2MOD, FB, CORR, RMSE, NMQSE, and VG.

Table 2
Mean and standard deviation of distance from source, along with number and
standard deviation of iterations obtained for Prairie Grass experiment 43.

RMSE NRMSE FB CORR

Distance from source (m) 6.871.8 6.572.3 8.072.3 6.972.5
Iterations 281770 254796 2567130 2557116

VG AHY1 AHY2 AHY2MOD

Distance from source (m) 6.971.3 5.572.6 6.872.8 7.472.2
Iterations 275788 2757130 257779 2357120
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atmospheric pollutant. The concentration field is simulated using a
Gaussian dispersion model. The paper focus on the performance
analysis of the algorithm when different functions are used to
quantify the error between the actual concentration field and the
simulated concentration field from a candidate source. The Monte
Carlo algorithm selects candidate sources based on the minimization
of the error. In addition to the standard case, which can attain a
potential perfect match between the sensor (synthetic) observations
and the candidate source simulations, the performance analysis was
also conducted in the more realistic cases where random noise was
added to the sensor (synthetic) observations to simulate uncertainty.
The analysis investigates the effects of the number of sensors,
domain size and measurement uncertainties. The sensitivity of the
error functions to the variations of these parameters was also
analyzed by representing the contour lines of the corresponding
error surfaces. The study shows the existence of a threshold (in our
configuration 16 sensors), beyond which a larger number of sensors
has little effect on the convergence rate. In the presence of noise,
both number and density of sensors play a major role on the rate of
convergence. The algorithm was tested with a real release from the
Prairie Grass field experiment.

In several occasions the Monte Carlo algorithm converged
towards a local optimum rather than the correct solution. This is
due to the multi-modal characteristics of the search space, which
includes several local minima. The convergence towards local
optima occurred exclusively in cases where the initial guess was
generated in the proximity of a minimum. Although a varying step
size mutation rate was adopted to try to ‘escape’ from local optima,
different methods can be used to avoid premature convergence. For
example, possible alternative methods are evolutionary algorithms
(e.g., Haupt, 2005), or more relaxed survival mechanisms, where the
admitted solutions may not be the one with the highest evaluation
score (e.g., Delle Monache et al., 2008). Both methods try to avoid
local solutions by slowing down the rate of convergence to perform
a more diverse sampling of the solution space.
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