
Advanced Review

Algorithm quasi-optimal (AQ)
learning
Guido Cervone,1∗ Pasquale Franzese2 and Allen P. K. Keesee3

The algorithm quasi-optimal (AQ) is a powerful machine learning methodology
aimed at learning symbolic decision rules from a set of examples and
counterexamples. It was first proposed in the late 1960s to solve the Boolean
function satisfiability problem and further refined over the following decade to
solve the general covering problem. In its newest implementations, it is a powerful
but yet little explored methodology for symbolic machine learning classification.
It has been applied to solve several problems from different domains, including
the generation of individuals within an evolutionary computation framework.
The current article introduces the main concepts of the AQ methodology and
describes AQ for source detection(AQ4SD), a tailored implementation of the AQ
methodology to solve the problem of finding the sources of atmospheric releases
using distributed sensor measurements. The AQ4SD program is tested to find the
sources of all the releases of the prairie grass field experiment .  2010 John Wiley &
Sons, Inc. WIREs Comp Stat 2010 2 218–236 DOI: 10.1002/wics.78

Keywords: AQ learning; machine learning classification; evolutionary computa-
tion; source detection; atmospheric emissions

The algorithm quasi-optimal (AQ) learning
methodology traces its origin to the Aq algo-

rithm for solving general covering problems of
high complexity.1,2 An implementation of the AQ
algorithm in combination with the variable-valued
logic representation produced the first AQ learning
program, AQVAL/1, which pioneered research on
general-purpose inductive learning systems.3 An early
application of AQ to soybean disease diagnosis was
considered one of the first significant achievements of
machine learning.4

Subsequent implementations, developed over
the span of several decades, added many new
features to the original system, and produced a
highly versatile learning methodology, able to tackle
complex and diverse learning problems. In the current
implementation, AQ is a multipurpose machine
learning methodology that generates rulesets in attri-
butional calculus. Because of a wide range of features
and a highly expressive representation language,

∗Correspondence to: gcervone@gmu.edu
1Department of Geography and Geoinformation Science, George
Mason University, Fairfax, VA 22030, USA
2Center for Earth Observing and Space Research, George Mason
University, Fairfax, VA 22030, USA
3Department of Statistics, George Mason University, Fairfax, VA
22030, USA

DOI: 10.1002/wics.78

recent members of the AQ family of programs are
among the most advanced symbolic learning systems.

The rapid development of computer technology
and high-level programming languages throughout
the 1980s and 1990s prompted researchers to port the
original Lisp version of the AQ methodology to new
programming environments. These developments,
however, were performed in an academic environment
and primarily for educational purposes, and they often
lacked stability, reliability, and ease of use associated
with other commercial or more popular classification
programs, such as classification and regression trees
(CART)5,6 and C4.5.7

As a result, despite such continuous develop-
ment, use of AQ programs has been limited, especially
outside the main developing group. In addition, lim-
ited AQ usage may be the result to some extent of
the complexity associated with running various dif-
ferent AQ implementations (i.e., variations based on
different parameter settings available within the basic
AQ framework). That is, changing modes, tolerance
levels, thresholds, and other parameters that can be
adjusted in AQ to address different kinds of data or
set up AQ to generate different types of output is an
exercise in fine tuning, and although correct parame-
ter setting is not overly difficult to learn, it does take
some effort and even a modicum of trial and error
with specific datasets.

218  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

This article describes a complete rewrite of the
AQ algorithm, specifically tailored for the problem
of detecting the source of an atmospheric pollutant
release from limited ground sensor measurements.
Before undertaking the task of developing an entirely
new AQ program, we analyzed relevant available
existing AQ implementations, such as AQ158 and
AQ18.9 Our analysis indicated that the above
implementations were optimized for speed, rather
than for the extensibility or comprehensibility of the
code. Additionally, many of the features included
in the existing implementations were not needed in
the context of atmospheric source detection, whereas
some crucial features were missing. Therefore,
the specialized AQ for source detection (AQ4SD)
represents for the AQ approach a fresh new start.
Although AQ4SD can be used as a general machine
learning classifier, it was specifically designed to
work with large noisy datasets containing a limited
number of primarily real-valued attributes but up to
hundreds of thousands of cases. The main application
of AQ4SD is to generate new candidate solutions in
a non-Darwinian evolutionary computation process.
It was optimized to run iteratively and included a
new mechanism for incremental learning to refine
previously learned patterns or rules using only new
events, rather than starting the learning process from
scratch each time. Using knowledge acquired from the
analysis of the previous codes, the new design aims
at making the new implementation reliable, easy to
use, and easy to modify and extend, while retaining
relevant features previously implemented in AQ rule
learning systems.

The article is structured as follows: the first
section gives an introduction to the AQ method-
ology; it discusses the implementation of AQ4SD,
and discusses the strengths and disadvantages; Section
Advantages and Disadvantages of the AQ Methodol-
ogy presents advantages and disadvantages associated
with the AQ methodology compared with other meth-
ods; Section Evolutionary Computation Guided by
AQ discusses the use of AQ as main engine for
an evolutionary computation process; Section Source
Detection of Atmospheric Releases discusses the prob-
lem of source detection of atmospheric releases and
presents a technique based on AQ learning to identify
the source of unknown releases; and Section Results
presents the results from the application of AQ to
identify the sources of the real-world Prairie Grass
experiment.49 Finally, Section Discussion summarizes
the main contributions of the articles and the results
of the experiments.

AQ METHODOLOGY

Overview
This section reviews the main features of AQ-type
learning. A detailed description of various aspects of
the methodology can be found in Refs 1–3, and 9–12.
AQ pioneered the sequential covering (a.k.a. ‘separate
and conquer’) approach to concept learning. It is
based on an algorithm for determining quasi-optimal
(optimal or suboptimal) solutions to general covering
problems of high complexity.

AQ is a machine learning classifier that
generalizes sets of examples with respect to one or
more sets of counter-examples. The input data for AQ
is therefore made of labeled data, or in other words
data which is already assigned to a particular class
or group. Unlike clustering, a form of unsupervised
learning, whose goal is dividing unlabeled data into
distinct classes, AQ is a form of supervised learning,
wherein classified data are generalized to identify the
characteristics of the entire class.

In its simplest form, given two sets of multivari-
ate descriptions, or events, P1, . . . , Pn and N1, . . . , Nm,
AQ finds rules that cover all P examples (a.k.a. positive
events) and do not cover any of the N examples (a.k.a.
negative events). More generally, each multivariate
description is a classified event of type x1, . . . , xk, and
c, where each x is an attribute value, and c is the
class it belongs to. For each class c, AQ considers as
positive all the events that belong to class c, and as
negative all the events belonging to the other classes.

The algorithm learns from examples (positives)
and counterexamples (negatives) patterns (a.k.a. rules)
of attribute values that discriminate the characteristics
of the positive events with respect to the negative
events. Such patterns are generalizations of the
individual positive events and depending on AQ’s
mode of operation may vary from being totally
complete (covering all positives) and consistent (not
covering any of the negatives) to accepting a tradeoff
of coverage to gain simplicity of patterns.

The AQ learning process can proceed in one of
two modes: (1) the theory formation (TF) mode and
(2) the pattern discovery (PD) mode. The PD mode
was introduced in AQ18 and was not part of the
original methodology. In the TF mode, AQ learns
rules that are complete and consistent with regard to
the data. In other words, the learned rules cover all the
positive examples and do not cover any of the negative
examples. This mode is mainly used when the training
data can be assumed to contain no errors. The PD
mode is used for determining strong patterns in the
data. Such patterns may be partially inconsistent or
incomplete with respect to the training data. The PD

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 219



Advanced Review wires.wiley.com/compstats

mode is particularly useful for mining very large and
noisy datasets.

The core of the AQ algorithm is the so-called star
generation, the process of which can be done in two
different ways, depending on the mode of operation
(TF or PD). In TF mode, the star generation proceeds
by selecting a random positive example (called a seed)
and then generalizing it in various ways to create
a set of consistent generalizations (that cover the
positive example and do not cover any of the negative
examples). In PD mode, rules are generated similarly,
but the program seeks strong patterns (that may
be partially inconsistent) rather than fully consistent
rules. This star generation process is repeated until all
the positive events are covered. Additionally, when
run in PD mode, the generated rules go through
an optimization process which aims at generalizing
and/or specializing the learned descriptions to simplify
the patterns.

AQ4SD Features and Implementation
AQ4SD is, as noted above, a total rewrite of the AQ
algorithm, specifically optimized to solve the problem
of source detection of atmospheric releases (see Section
Source Detection of Atmospheric Releases). It shares
many parts with the earlier version of AQ2011 but
includes new features and optimization algorithms
for the source detection problem. The development of
AQ20 was led by the first author in close collaboration
with many faculty and student members of the
Computer Science Department and Machine Learning
Laboratory at George Mason University.

AQ4SD is written in C++ making extensive
use of the standard templated library (STL)13 and
generic design patterns.14 The entire code comprises
about 250,000 lines. The goal of the AQ4SD
algorithm was to be suitable as a main engine of
evolution in a non-Darwinian evolutionary process
(see Section Evolutionary Computation Guided by
AQ) to find the sources of atmospheric releases, using
sensor concentration measurements and forward
atmospheric transport and dispersion numerical
models.

AQ4SD was thus optimized to be used iteratively
because evolutionary computation is based on
iterative processes. It is tailored primarily toward
real-valued (continuous) attributes, and it uses a novel
method that does not discretize real-valued attributes
into ordinal attributes during preprocessing. It is
also optimized to work with noisy data, as sensor
concentration measurements often contain errors and
missing values. Finally, as sensors are usually very
limited in number but record very long time series,

AQ4SD is optimized to run with a very large
number of events with a small number of attributes.
Experiments, for example, were performed with up
to 1,000,000 training events, each comprised of 20
real-valued attributes.

Although a formal analysis of the complexity of
the AQ algorithm is beyond the scope of this article,
experimental runs showed that AQ complexity is
polynomial. In particular, it is a low-order polynomial
in the number of events and a higher order polynomial
in the number of negative events. The lower complex-
ity increases associated with an increase in positive
events are due to the fact that in optimization during
learning, only uncovered positive events are used to
evaluate rules (whereas all negatives, or a sample of
all the negatives, are used to evaluate the rules).

The following sections describe the algorithms
and data types used and implemented in AQ4SD.
Because AQ4SD is an implementation of a general
methodology, when AQ4SD is specified in the text, it
refers to specific features or implementation details of
AQ4SD itself, whereas when AQ is specified, it refers
to concepts and theories that apply to the general AQ
methodology.

AQ Events
The AQ input data consists of a sequence of events.
An event is a vector of values, where each value corre-
sponds to a measurement associated with a particular
attribute. An event can be seen as a row in a database,
with each value an observation of a particular
attribute where columns are the different attributes.

AQ events are a form of labeled data, meaning
that they are or can be classified into one of two or
more classes. Therefore, each event contains a special
attribute class, which identifies which class it belongs
to. A sequence of events belonging to the same class
is called an eventset.

Additionally, two different types of events can
be used by AQ: training and testing. Training events
are used by AQ to learn rules. Testing events are used
to compute the statistical correctness of the learned
rules on events not used during learning.

AQ Rules
AQ uses a highly descriptive representation language
to represent the learned knowledge. In particular,
it uses rules to describe patterns in the data. A
prototypical AQ rule is defined in logical Eq. (1).

Consequent ←− Premise � Exception (1)

220  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

where consequent, premise and exception are conjunc-
tions of conditions. While premise and consequent
are mandatory, the exception is optional and used
only in very special circumstances. Although excep-
tion has been implemented in AQ4SD, it is not being
used, because it often leads to over fitting in the
presence of very noisy data. A condition is simply a
relation between an attribute and a set of values it can
take.

[Attribute. Relation. Value(s)] (2)

Depending on the attribute type, different
relations may exist. For example, for unordered
categorical attributes, the relations < or > cannot
be used as they are undefined. A complete set of
the relations allowed with each attribute type is
given in Section Attribute Types). Typically, the
consequent consists of a single condition, whereas the
premise consists of a conjunction of several conditions.
Equation (3) shows a sample rule relating a particular
cluster to a set of input parameters. The annotations
p and n indicate the number of positive and negative
events covered by this rule.

[Cluster = 1] ←− [WindDir = N . . . E]

[WindSpeed > 10 m/s] (3)

[Temp > 22◦C] : p = 11, n = 3

This type of rule is usually called attributional to
be distinguished from more traditional rules that
use a simpler representation language. The main
difference from traditional rules is that referee
(attribute), relation, and reference may include
internal disjunctions of attribute values, ranges of
values, internal conjunctions of attributes, and other
constructs. Such a rich representation language means
that very complex concepts can be represented using
a compact description. However, attributional rules
have the disadvantage of being more prone to over
fitting with noisy data.

Multiple rules are learned for each cluster, and
are called a ruleset. A ruleset for a specific consequent
is also called a cover. A ruleset is a disjunction of
rules, meaning that even if only one rule is satisfied,
then the consequent is true. Multiple rules can be
satisfied at one time because the learned rules could
be intersecting each other. Equation (4) shows a

sample ruleset:

[Cluster = 1] ←− [WindDir = N . . . E]

[WindSpeed > 10 m/s]

[Temp > 22◦C] : p = 11, n = 3

←− [WindDir = E]

[Date = July] : p = 5, n = 0

←− [Pressure > 1010]

[Date = Sep] : p = 1, n = 0 (4)

Each rule has a different statistical value. Assuming
13 positive events associated with cluster 1, the first
rule in Eq. (4) covers not only most positive events in
the cluster (11 of the 13 events) but also three negative
events. This means that AQ was run in PD mode, to
allow inconsistencies to gain simpler rules. The second
rule covers less than 50% of the events and the third
covers only 1, but both without covering any elements
in other clusters. Therefore, there is a tradeoff between
completeness, namely the number of events covered
out of all the clouds in the cluster and consistency,
namely the coverage of events from other clusters.

Attribute Types
AQ4SD allows for four different types of attributes,
nominal, linear, integer, and continuous. Each
attribute type is associated with specific relations that
can be used in rule conditions.

Nominal: Unordered categorical attribute for which
a distance metric cannot be defined. Nominal
attributes do not naturally or necessarily fall into
any particular order or rank, like the colors or
blood types or city names. The domain of nominal
attributes is thus that of unordered sets. The
following relations are allowed in rule conditions:
equal (=) and not equal ( �=).

Linear: Ordinal categorical attribute that is rankable,
but not capable of being arithmetically operated
upon. Examples of linear attributes are small,
medium, large, or good, better, best. Such
attributes can be sorted and ranked but cannot
be multiplied or subtracted from one other. The
following relations are allowed in rule conditions:
equal (=), not equal ( �=), lesser (<), greater (>),
lesser or equal (≤), and greater or equal (≥).

Integer: Ordinal integer-valued attribute without a
prefixed discretization and without decimal
values. Integer attributes allow only whole
numbers, such as 20, or −77. The following
relations are allowed in rule conditions: equal

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 221



Advanced Review wires.wiley.com/compstats

(=), not equal ( �=), lesser (<), greater (>), lesser
or equal (≤), and greater or equal (≥).

Continuous: Ordinal real-valued attribute without
a prefixed discretization but which contains a
decimal point and a fractional portion. The
following relations are allowed in rule conditions:
equal (=), not equal ( �=), lesser (<), greater (>),
lesser or equal (≤), and greater or equal (≥).
Previous versions of AQ dealt with continuous
variables by discretizing them into a number
of discrete units and then treating them as
linear attributes. AQ4SD does not require such
discretization as it automatically determines
ranges of continuous values for each variable
occurrence in a rule during the star generation
process.

AQ Algorithm
The AQ learning process can be divided into
four different parts: data preparation, rule learning,
postprocessing, and optional testing. The following
sections address each part individually.

The input data is made of a definition of the
attributes (variables), AQ control parameters for each
of the four parts mentioned above, and the raw events.
The output of AQ consists of the learned rules, which
can be displayed in textual or graphical form. Different
versions of AQ used different ways to define the format
of the input and output. Because the different methods
do not affect learning, they are not discussed in this
article. AQ4SD uses the input/output format described
in Ref 12.

Data Preparation
The AQ learning process starts with data being
read from a file (when used as a stand alone
classifier) or from memory (when embedded in a
larger system). The data is processed by the data
preparation mechanism, which checks the data format
for correctness, corrects or removes ambiguities,
selects the relevant attributes (a.k.a. feature selection),
and applies rules for incremental learning.

Some versions of AQ can also automatically
or through user input generate new attributes to
change the data representation. This feature, called
constructive induction, was first implemented in
a specialized version of AQ1715,16 and is not
implemented in AQ4SD.

Resolving Ambiguities
An ambiguity is an event that belongs to two or more
classes. For the purpose of learning, each event must

be unique and belong to a single class. AQ has four
different strategies to resolve ambiguities:

Positives: The ambiguous event is kept in the positive
class (the class rules are being learned from) and
eliminated from all the other classes.

Negatives: The ambiguous event is eliminated from
the positive class.

Eliminate: The ambiguous event is eliminated and
not used for learning.

Majority: The ambiguous event is associated to the
class where it most appears.

Attribute Selection
In general, AQ learns rules to discriminate between
classes using only the smallest number of attributes.a

Therefore, AQ performs an automatic attribute
selection during the learning phase, selecting the most
relevant attributes, and disregarding those apparently
irrelevant. Unfortunately, especially for large noisy
problems, irrelevant attributes can lead to generation
of incorrect rules. To avoid this problem, AQ can
be set to create statistics for each of the attribute
values, namely a measure of how many positives
and negative examples, respectively, each attribute
value covers. AQ can try to keep only those attributes
that seem to have more discriminatory information
between classes.

This is only a rough approximation, as
individual attributes might have little discriminatory
information when considered singularly but can help
the generation of excellent rules in combination with
others. Creating such statistics is a quick linear
operation that requires a one-time analysis of the
entire data or of a statistical sample of the data.
Because such statistics are also used by the learning
and optimization algorithms, there is not a significant
computational overhead introduced by this attribute
selection method.

Rules for Incremental Learning
One of the main advantages of AQ (see Section
Advantages and Disadvantages of the AQ Method-
ology) is the ability to refine previously learned rules
as new input events become available. The input data
can specify rules that describe either a previously
learned concept or constraints between attributes.
For example, they can specify that a particular
combination of attributes cannot appear together in
a rule or that the boundaries of the search space are
reduced under particular attribute values.

As described in detail in Section Rule Learning,
AQ starts generating rules by comparing positive

222  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

and negative events and keeps specializing previously
learned rules with new conditions when they cover
negative events. In incremental learning mode, the
set of rules being specialized does not start with an
empty set but with those specified in the input data.
No other aspects of the learning are affected except
in the case of extreme ambiguities, when the supplied
rules do not include any positive examples. In such
situations, AQ cannot use the input rules as it is not
able to evaluate their positive and negative coverage.

Rule Learning
This is the core of the AQ methodology, where rules
are generated from examples and counterexamples.
AQ generates rules by an iterative process aimed at
identifying generalizations of the positive examples
with respect to the negative examples. Recall that
positive examples are those labeled for the target
class, and negatives are those belonging to all the
other classes.

The main algorithm for AQ is illustrated in
Algorithm 1. Although several variants and optimiza-
tion mechanisms have been developed, the main core
shown is true for the main AQ methodology. AQ
requires two nonempty eventsets, one of positive and
one of negative events, where at least one positive
event and one negative event are not ambiguous. The
algorithm starts by making a new list of positive events
yet to be to cover P′. The algorithm loops until all
positives have been covered.

The algorithm starts by selecting a random
positive event, called the seed from among P′, and
then creates a star (Section Star Generation) for
that example.b The result of the star is a rule that
generalizes the seed and does not cover any of the
negatives (TF mode) or can allow an inconsistent
coverage for simpler rules (PD mode).

A lexicographical evaluation functions (LEF) is
used to evaluate the rules during the star genera-
tion (Section Lexicographical Evaluation Functions).
Next, all the events covered by rule r are removed
from the list P′. Rule r is guaranteed to cover at least

the seed but might cover many if not all the events in
P′. Rule r is then added to the list of rules R to be
added to the final answer.

Star Generation
The central concept of the algorithm is a star, defined
as a set of alternative general descriptions (rules) of a
particular event (a ‘seed’) that satisfy given constraints,
for example, do not cover negative examples, do not
contradict prior knowledge, etc.

The star generation is an iterative process
(Algorithm 2). First, the seed is extended against
each negative example (line 3). The extension-against
operator (�) is a pair-wise generalization operation
between the seed and a negative event aimed at
finding the largest possible set of descriptions (rules)
that cover the seed but not the negative. Thus,
the result of the extension-against operation is a
disjunction of single condition rules, namely one rule
for each nonidentical attribute. An identical attribute
is simply an attribute that has the same value for
both the seed and the negative event, and for which
a generalization that covers the seed but not the
negative cannot be made. For each dimension, the
largest possible description that covers the seed, but
not the negative, is the negation of the negative.
This definition of the extension-against operator only
works for nominal attributes and is implemented by
encoding the attribute domain into a binary vector,
where each bit represented a particular value, and by
negating this vector.

Assuming a nominal variable ||x|| = {red, green,
blue}, x = blue is encoded as {0,0,1}. The result
of the extension-against operation between a seed
with x = blue and a negative event with x = red
is the rule [positive] ←− [x = green or blue]. Its

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 223



Advanced Review wires.wiley.com/compstats

binary representation is [{0,1,1}], which is exactly the
negation of the negative event.

The extension-against operation for linear
attributes is slightly different, and it involves flipping
the bits only up to the value of the negative event,
and not any values beyond. Assuming a linear
variable ||y|| = {XS, S, M, L, XL, XXL}, the result
of the extension-against operation between a seed
with y = S and a negative event with y = L is
the rule [positive] ←− [y = XS . . . M]. Its binary
representation is [{1,1,1,0,0,0}].

For integer and continuous attributes, the
extension-against operator finds a value between the
seed and negative. The degree of generalization can
be controlled, and by default set to choose the middle
point between the two. The ε parameter, defined
between [0 and 1], controls the degree of generaliza-
tion during the extension-against operation, with 0
being most restrictive to the seed, and 1 generalizing
up to the negative. Assuming a continuous variable
||z|| = {0.100}, the result of the extension-against
operation between a seed with z = 10 and a negative
event with y = 30, and ε = 0.5 is the rule [positive]
←− [z ≤ 20]. The result of the same extension-against
operation with ε = 1 is [positive] ←− [z < 30] (note
that 30 is not included).

The rules from the extension-against operation
are then logically multiplied out with all the rules r to
form a star (Algorithm 2, line 4), and the best rule (or
rules) according to a given multicriterion functional
LEF (Section Lexicographical Evaluation Functions)
are selected (line 5). The parameter maxstar is central
to the star generation process and defines how many
rules are kept for each star.

If AQ is run in TF mode, the result from the
intersection of the previously learned rules and the
new rule is kept. In PD mode, the function Q [Eq.
(5)] is used to compute the tradeoff between the
completeness and the consistency of the rules

Q =
(

p
P

)w [(
P + N

N

)(
p

p + n
− P

P + N

)]1−w

(5)

where is p and n are the number of positive and
negative events, and P and N are the total number of
positive and negative events in the data. The parameter
w is defined between 0 and 1 and controls the tradeoff
between completeness and consistency.9

Lexicographical Evaluation Functions
LEF is an evaluation function composed from
elementary criteria and their tolerances and are used
to determine which rules best reflect the needs of
the problem at hand. In other words, LEF is used

to determine which rules, among those generated,
are best suited to be included in the answer. AQ
has been described as performing a beam search in
space.8 LEF is the parameter that controls the width of
the beam.

LEF works as following:

1. Sort the rules in the star according to LEF, from
the best to the worst.

2. Select the first rule and compute the number
of examples it covers. Select the next rule and
compute the number of new examples it covers.

3. If the number of new examples covered exceeds a
new example threshold, then the rule is selected,
otherwise it is discarded. Continue the process
until all rules are inspected.

The result of this procedure is a set of rules
selected from a star. The list of positive events to
cover is updated by deleting all those events that are
covered by these rules.

Postprocessing
Postprocessing operations consist in: (1) improvement
of the learned rules through generalization and
specialization operators, (2) optional generation of
alternative covers, and (3) formatting of the output
for textual and graphical visualization.

Optimization of Rules
When AQ is run in PD mode, rules can be further
optimized during post processing. Rules can be
generalized by dropping values in the reference of the
conditions or by enlarging the ranges for continuous
and integer attributes. Rules can be further generalized
by dropping conditions altogether. Finally, entire
rules could be dropped. The opposite operation of
specialization is performed only at the condition level,
by adding values in discrete attributes, and shrinking
domains for integer and continuous attributes.

The optimization operation follows heuristics,
and at each step computes what is called in AQ the Q
value for the new rule Eq. (5). If the Q value increases,
then the modified rule is added to the final answer,
otherwise is disregarded.

Alternative Covers
Some of the rules learned during the star generation
process, especially with large maxstar values, might
not be required in the final output. The final step of
the learning process consists in selecting from the pool
of learned rules, only the minimum set required to

224  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

Rule 2
(27, 0)

Rule 3
(25, 0)

Rule 2
(2, 0)

Rule 1
(11, 0)

Group = 2
(30, 19)

Group = 6
(11, 39)

HumidityPressureBlackSSTWind0Z500

=NE..S
(23,3)

=N..SE
(27,8)

>=7.79
(28,14)

>=9.954e+04
(30,16)

>=1.002e+05
(16,9)

=5.45..8.95
(13,12)

=Feb..Nov
(25,12)

<=0.8399
(27,17)

<=294.7
(23,19)

>=2
(28,19)

<=38
(9,31)

=Feb..Mar
(2,4)

<=Dec
(11,39)

=3.75..5.45
(3,8)

>=5.35
(9,33)<=1.011e+05

(11,39)
=7.035..19.32

(10,22)

=S..W
(10,8)

Date SLHF Air temperature

DiffSST

Rule 1
(30, 0)

FIGURE 1 | A sample association graph from an atmospheric pollution problem.

cover the positive examples. Thus, some of the rules
might not be included in the final answer and can be
used to generate alternative solutions. Depending on
the presence of multiple strong patterns in the data,
alternative covers might be very useful to discriminate
between classes.

Association Graphs
Association graphs are used to visualize attributional
rules that characterize multivariate dependencies
between target classes and input attributes. A pro-
gram called concept association grapth (CAG) was
developed by the first author to automatically display
such graphs. Figure 1 is a graphical illustration of
the rules discovered from an atmospheric release
problem.17 Representing relationships with nodes and
links is not new nor unique to AQ and has been used
in many applications in statistics and mathematics.
Each target class is associated only with unique pat-
terns of input parameters. The thickness of the links
indicates the weight of a particular parameter-value
combination in the definition of the cluster.

ADVANTAGES AND DISADVANTAGES
OF THE AQ METHODOLOGY

The AQ methodology has intrinsic advantages and
disadvantages with respect to other machine learning
classifiers, such as neural networks, decision trees, or
decision rules. Some of the original disadvantages have
been solved or improved with additional components
or optimization processes, often at the expense

of a much slower or complex program. Other
issues remain unresolved and open to investigation.
The following discussion summarizes those that are
believed to be the main issues to consider when
choosing the AQ methodology over other methods,
in particular C4.5 which is the closest widely used
machine learning symbolic classifier.

Rich Representation Language
One of the main advantages of AQ consists in the abil-
ity to generate compact descriptions which are easy to
read and understand. Unlike neural networks, which
are black boxes and use a representation language
that cannot be easily visualized, AQ rules can be
inspected and validated by human experts. Although
decision tree classifiers, such as C4.5, can convert the
learned trees into rules, the resulting descriptions are
expressed in a much simpler representation language
in AQ. For example, C4.5 rules only allow for atomic
relationships between attributes and possible values
and do not allow for internal disjunctions or multiple
ranges. Figure 2 shows the respective covers generated
by AQ (left) and C4.5 (right). In this example, internal
disjunction allows for a simpler and more compact
representation due to intersecting patterns.

The cover generated by AQ [Eq. (6)] is composed
of two rules with a single condition, each covering 20
positives and no negatives.

[Positives = 1] ←− [X ≥ 5] : p = 20, n = 0

←− [Y ≥ 5] : p = 20, n = 0 (6)

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 225



Advanced Review wires.wiley.com/compstats

1086420

X

108642

X

Y

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−
−

−

− −

−

−

− 

− −

AQ Cover

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−
−

−

− −

−

−

−

− −

C4.5 Cover

10

8

6

4

2

0
Y

10

8

6

4

2

0

0 FIGURE 2 | Different covers
generated by AQ (left) and C4.5
(right) using the same dataset.

In contrast, the tree [Eq. (7)] and the corresponding
rules [Eq. (8)] generated by C4.5 cannot represent
the intersecting concept because of the simpler
representation language.

Root

X < 5

Y ≥ 5

Positives

Y < 5

Negatives

X ≥ 5

Positives

(7)

[Positives = 1] ←− [X ≥ 5] : p = 20, n = 0

←− [X < 5][Y ≥ 5] : p = 10, n = 0

(8)

The C4.5 cover is composed of two rules, one
with a single condition, and one with two conditions.
The first, identical to the rule learned by AQ, covers
20 positives and no negatives, whereas the second
covers only 10 positives and no negatives. Although
both covers are complete and consistent, the cover
of C4.5 is more complex and cannot represent the
intersecting concept.

Speed
AQ is considerably slower than C4.5 because of
the underlying differences between the ‘separate and
conquer’ learning strategy of AQ and the ‘divide and
conquer’ strategy of C4.5. In C4.5, at each iteration,
the algorithm recursively divides the search space. This
means that at each iteration the algorithm analyzes an
always smaller number of events. In contrast, AQ
compares each positive with all of the negatives.
Effectively, AQ can be optimized to consider only

a portion of the positive examples but still has to
consider all the negatives. This is in part due to the
ability of representing intersecting concepts, meaning
that rules are not bound to prior partitions.

Quality of Decisions
As previously seen, C4.5 performs consecutive splits
on a decreasing number of positive and negative
examples. This means that at each iteration, decisions
are made on a smaller amount of information. In
contrast, AQ considers all the search space at each
iteration, meaning that all decisions are made with
the maximum amount of information available.

Control Parameters
AQ has a very large number of control variables. Such
controls allow for a very fine tuning of the algorithm,
which can lead to very high quality descriptions. On
the other hand, it is often difficult to determine a priori
which set of parameters will generate better rules.
Although heuristics on how to set the parameters
exist, they are often suboptimal, and user fine tuning
is required for optimal descriptions.

Matching of Rules and Events
AQ allows for different methods to test events on a
set of learned rules. In C4.5, and most other classifiers
which do not allow for intersecting concepts, testing
an event usually involves checking if it is included in
a rule or not. This is due to the fact the entire search
space is partitioned into one of the target classes. In
AQ, each event can be included in more than one rule
or could be in an area of the search space which has not
been assigned to any classes. Assigning an unclassified
event to one of the target classes involves computing

226  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

X

d1

d2

d3

FIGURE 3 | An event that lies in an area of the search space which
is not generalized to any of the training classes is assigned to the class
it is closest to.

different degrees of match between the event and the
covers of each of the classes and selecting the class with
highest degree of match. Figure 3 shows the example
of an unclassified event that lies in an area of the search
space not generalized to any of the classes. The degree
of match between the event and the cover of each of the
class is computed, and it is assigned to the class with
the highest score, in this case (d1). Several distance
functions can be used to match rules and events and
differ at the top level if they are strict or flexible.

In strict matching, AQ counts how many times
a particular event is covered by the rules of each of
the classes. An event can be covered multiple times by
the rules of a particular class because the rules might
be intersecting due to internal disjunctions. It can also
be covered multiple times by rules of different classes
if AQ was run in PD mode, and inconsistent covers
were generated.

In flexible matching, AQ computes the ratio of
how many of the attributes are covered over the total
number of attributes. Assuming an event with three
attributes, if a rule for class A matches three of them,
and rule for class B matches two of them, the event is
classified as type A because of a higher flexible degree
of match. If the degree of match falls below a certain
threshold, AQ classifies the event as unknown. In case
more than one class has the same degree of match,
the classification is uncertain, and multiple classes are
output.

Multiple Target Classes
Decision tree classifiers are advantaged when learning
from data with several target classes. They can learn

descriptions for each of the classes using a single itera-
tion of the algorithm, leading to very fast results. AQ,
on the other hand, must be run multiple times, each
time using the events of the target class as positives
and the events of all the other classes as negatives.
Such limitation seriously affects the execution time.
Additionally, because rules are learned separately for
each class, the resulting covers might be intersecting.
Intersecting concepts might lead unseen testing events
to be classified as belonging to more than one class.

Alternative Covers
AQ can generate alternative covers for each run. This
is because in the postprocessing phase, only a portion
of the learned rules are used for the final output. By
selecting different rules combinations, it is possible to
generate a number of alternative covers. Each cover
might differ in completeness and consistency, and in
simplicity of patterns.

Incremental Learning
Decision rule learners have the intrinsic advantage of
being able to refine previous rules as new training data
become available. This is because of the sequential
nature of the ‘separate and conquer’ strategy of
algorithms. Refinement of rules involves adding or
dropping conditions in previously learned rules or
splitting a rule in a number of partially subsumed
rules. The main advantage is that modification in a rule
of the cover does not affect the coverage of the other
rules in the cover (Although the overall completeness
and consistency of the entire cover might be affected).
In contrast, although possible, it is more complicated
to update a tree as it often involves several updates
that propagate from leaves of the tree, all the way
to the root. Additionally, the resulting tree might be
suboptimal and very unbalanced, prompting for a
complete re-evaluation of each node.

Input Background Knowledge
Because of the ability of AQ to update previously
learned rules, it is possible to add background knowl-
edge in the form of input rules. This feature is partic-
ularly important when there is an existing knowledge
of the data, or constraints on the attributes, which
can lead to a simpler rules and a faster execution.

EVOLUTIONARY COMPUTATION
GUIDED BY AQ

The term evolutionary computation was coined in
1991 as an effort to combine the different approaches

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 227



Advanced Review wires.wiley.com/compstats

to simulating evolution to solve computational
problems.18–23 Evolutionary computation algorithms
are stochastic methods that evolve in parallel a
set of potential solutions through a trial and error
process. Potential solutions are encoded as vectors
of values and evaluated according to an objective
function (often called fitness function). The evolu-
tionary process consists of selecting one or more
candidate solutions whose vector values are modified
to maximize (or minimize) the objective function.
If the newly created solutions better optimize the
objective function, they are inserted into the next
generation, otherwise they are disregarded. While
the methodologies and algorithms that are subsumed
by this name are numerous, most of them share one
fundamental characteristic. They use nondeterministic
operators such as mutation and recombination as the
main engine of the evolutionary process.

These operators are semi-blind, and the evolu-
tion is not guided by knowledge learned in the past
generations, but it is a form of search process executed
in parallel. In fact, most evolutionary computation
algorithms are inspired by the principles of Darwinian
evolution, defined by ‘. . .one general law, leading to
the advancement of all organic beings, namely, multi-
ply, vary, let the strongest live and the weakest die’.24

The Darwinian evolution model is simple and fast
to simulate, and it is domain independent. Because
of these features, evolutionary algorithms have been
applied to a wide range of optimization problems.25

There have been several attempts to extend
the traditional Darwinian operators with statistical
and machine learning approaches that use history
information from the evolution to guide the search
process. The main challenges are to avoid local
maxima and increase the rate of convergence. The
majority of such methods use some form of memory
and/or learning to direct the evolution toward
particular directions thought more promising.26–31

Because evolutionary computation algorithms
evolve a number of individuals in parallel, it is possible
to learn from the ‘experience’ of entire populations.
There is not a similar type of biological evolution
because in nature there is not a mechanism to evolve
entire species. Estimation of distribution algorithms
(EDA) are a form of evolutionary algorithms where
an entire population may be approximated with a
probability distribution.32 New candidate solutions
are not chosen at random but using statistical
information from the sampling distribution. The aim
is to avoid premature convergence and to provide a
more compact representation.

Discriminating between best and worst per-
forming individuals could provide additional infor-
mation on how to guide the evolutionary process.
The learnable evolution model (LEM) methodology
was proposed in which a machine learning rule
induction algorithm was used to learn attributional
rules that discriminate between best and worst per-
forming candidate solutions.33–35 New individuals
were then generated according to inductive hypothe-
ses discovered by the machine learning program. The
individuals are thus genetically engineered, in the sense
that the values of the variables are not randomly or
semi-randomly assigned but set according to the rules
discovered by the machine learning program.

The basic algorithm of LEM works like
Darwinian-type evolutionary methods, that is, exe-
cutes repetitively three main steps:

1. Create a population of individuals (randomly or
by selecting them from a set of candidates using
some selection method).

2. Apply operators of mutation and/or recombi-
nation to selected individuals to create new
individuals.

3. Use a fitness function to evaluate the new
individuals.

4. Select the individuals which survive into the next
generations.

The main difference with Darwinian-type evo-
lutionary algorithms is in the way it generates new
individuals. In contrast to Darwinian operators of
mutation and/or recombination, AQ conducts a rea-
soning process in the creation of new individuals.
Specifically, at each step (or selected steps) of evolu-
tion, a machine learning method generates hypotheses
characterizing differences between high-performing
and low-performing individuals. These hypotheses are
then instantiated in various ways to generate new indi-
viduals. The search conducted by LEM for a global
solution can be viewed as a progressive partitioning
of the search space.

Each time the machine learning program is
applied, it generates hypotheses indicating the areas
in the search space that are likely to contain high-
performing individuals. New individuals are selected
from these areas and then classified as belonging to
a high-performance and a low-performance group,
depending on their fitness value. These groups are
then differentiated by a machine learning program,
yielding a new hypothesis as to the likely location of
the global solution.

228  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

To understand the advantage of using AQ to
generate new individuals, compared with using the
traditional Darwinian operation, it is necessary to take
into account both the evolution length, defined as the
number of function evaluations needed to determine
the target solution, and the evolution time, defined as
the execution time required to achieve this solution.
The reason for measuring both characteristics is that
choosing between the AQ and Darwinian algorithms
involves assessing tradeoffs between the complexity of
the population generating operators and the evolution
length. The AQ operations of hypothesis generation
and instantiation used are more computationally
costly than operators of mutation and/or crossover,
but the evolution length is typically much shorter than
that of Darwinian evolutionary algorithms.

Therefore, the use of AQ as engine of evolution
is only advantageous for problems with high objective
function evaluation complexity. The problem of
source detection of atmospheric pollutants described
in this article is an ideal such problem because of the
complexity of the function evaluation which requires
running complex numerical simulations.

SOURCE DETECTION
OF ATMOSPHERIC RELEASES

When an airborne toxic contaminant is released in the
atmosphere, it is rapidly transported by the wind and
dispersed by atmospheric turbulence. Contaminant
clouds can travel distances of the order of thousand of
kilometers within a few days and spread over areas of
the order of thousands of square kilometers. A large
population can be affected with serious and long-
term consequences depending on the nature of the
hazardous material released. Potential atmospheric
hazards include toxic industrial chemical spills, forest
fires, intentional or accidental releases of chemical
and biological agents, nuclear power plants accidents,
and release of radiological material. Risk assessment
of contamination from a known source can be
computed by performing multiple forward numerical
simulations for different meteorological conditions
and by analyzing the simulated contaminant clouds
with clustering and classification algorithms to
identify the areas with highest risk.17

However, often the source is unknown, and
it must be identified from limited concentration
measurements observed on the ground. The likely
occurrence of a hazard release must be inferred from
the anomalous levels of contaminant concentration
measured by sensors on the ground or by satellite-
borne remote sensors.

There are currently no established methodolo-
gies for the satisfactory solution to the problem of
detecting the sources of atmospheric releases, and
there is a great degree of uncertainty with respect to the
effectiveness and applicability of existing techniques.
One line of research focuses on the adjoint trans-
port modeling,36–38 but more general and powerful
methodologies are based on Bayesian inference
coupled with stochastic sampling.39 Bayesian methods
aim at an efficient ensemble run of forward simu-
lations, where statistical comparisons with observed
data are used to improve the estimates of the unknown
source location.40 This method is general, as it is
independent of the type of model used and the
type and amount of data, and can be applied to
nonlinear processes as well. Senocak et al.41 used
a Bayesian inference methodology to reconstruct
atmospheric contaminant dispersion. They pair the
Bayesian paradigm with Markov chain Monte Carlo
(MCMC) to iteratively identify potential candidate
sources. A reflected Gaussian plume model is run for
each candidate source, and the resulting concentra-
tions are compared with ground observations. The
goal of the algorithm is to minimize the error between
the simulated and the measured concentrations.

A similar approach was followed by Refs 42–45,
which use an iterative process based on genetic algo-
rithms to find the characteristics of unknown sources.
They perform multiple forward simulations from ten-
tative source locations, and use the comparison of
simulated concentration with sensor measurements to
implement an iterative process that converges to the
real source. The strength of the approach relies in the
domain independence of the genetic algorithm, which
can effectively be used with different error functions
without major modifications to the underline method-
ology. The error functions quantify the difference
between simulated and observed values.

The methodology applied in this article is based
on this approach, but rather than using a traditional
evolutionary algorithm, it uses AQ4SD to generate
new individuals. This application is particularly suited
for AQ4SD, because the function evaluation is very
computationally intensive and requires running a
numerical simulation. The main advantage of using
AQ4SD to generate new individuals is the reduced
number of function evaluations, which in this case
translates to a huge improvement in speed.

Transport and Dispersion Simulations
Central to every evolutionary algorithm is the
definition of the objective or fitness function. Given
a candidate solution, the fitness function evaluates it
and gives as feedback which solution is better for the

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 229



Advanced Review wires.wiley.com/compstats

problem at hand. Each candidate solution is comprised
of eight variables x, y, z, θ , U, Q, S, and ψ . x, y, and z
are the coordinates of the release in kilometers; θ and
U are, respectively, the wind direction and speed in
degrees and ms−1; Q is the source strength in gs−1;
S is proportional to the area of the release in m2;
and ψ describes the atmospheric stability according
to Pasquill’s stability classes.46,47 The fitness of each
candidate solution is computed using a normalized
mean square error (NMSQE) function between the
observed concentrations and the simulated values:

NMSQE =
√√√√ (Co − Cs)2

Co
2 (9)

where Co is each sensor’s observed values, and Cs is
the corresponding simulated value. The bar indicates
an average over all the observations. The values for Cs
are simulated using a three-dimensional (3D) Gaussian
dispersion model, that is,

Cs = P1P2(P3 + P4) (10)

where P1, . . . , P4 are defined by

P1 = Q

2πU
√

(S + σ 2
y)(S + σ 2

z )
(11)

P2 = exp

[
− (y − y0)2

2(S + σ 2
y)

]
(12)

P3 = exp
[
− (z − z0)2

2(S + σ 2
z )

]
(13)

P4 = exp
[
− (z + z0)2

2(S + σ 2
z )

]
(14)

where σ x(x, x0; ψ), σ y(x, x0; ψ), σ z(x, x0; ψ) are
the dispersion coefficients, which were computed
from the tabulated equations of Briggs,48 and S =
σ2y(xo, xo, ψ) = σ2y(xo, xo, ψ).

The result of the simulation is the concentration
field generated by the release along an arbitrary
wind direction. In order to map each Cs with the
corresponding Co, the wind direction θ is taken into
account by applying a rotation to the x, y, and z
coordinates of each Cs points.

Prairie Grass Experiment
The current application uses real-world data from
the prairie grass field experiment.49 The experiment
consisted of 68 consecutive releases of 10 min each
from the same source. SO2 was used as a trace gas,
and measurements of concentrations were made at

0 200 400 600 800 1000

−1000

−500

0

500

1000

Distance (km)

D
is

ta
nc

e 
(k

m
)

20

20

20

0

0

0

0

20
40

60

80

FIGURE 4 | Summary of the 68 prairie grass experiments.

sensors positioned along arcs radially located at
distances of 50, 100, 200, 400, and 800 m from
the source. Only sensors that recorded values above
a minimum threshold were considered reliable, and
as a result, each experiment has a different number
of concentration measurements depending on the
atmospheric conditions at the time of the release.
The goal of the optimization process is to identify the
source and the atmospheric characteristics. The only
information used for the fitness evaluation are the
values of the concentrations measured at the sensors.
Figure 4 shows a summary of the 68 consecutive
experiments. The concentration was computed by
interpolating all the values measured at the concentric
sensors (shown). The main direction of each release,
as indicated in the experiment’s summary, is shown
with the solid lines protruding from the interpolated
surface. One of the characteristics of the prairie grass
experiment is the detailed information on the atmo-
spheric conditions at the time of the release. It is then
possible to classify each experiment as belonging to
a different atmospheric type, using Pasquill’s stability
classes.46,47 Pasquill’s classes range from unstable
(A) to neutral (D) to stably stratified atmosphere (F).

230  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

FIGURE 5 | Different sample prairie
grass releases by atmosphere type.

0 200 600 1000
−600

−200

0

200

400

600

−600

−200

0

200

400

600

−600

−200

0

200

400

600

−600

−200

0

200

400

600

−600

−200

0

200

400

600

−600

−200

0

200

400

600

3

32

2

2

1

0

 1 2 

Release 25, type A

0 200 600 1000

 3 

 3 

 3 

2 

 1
 

 1 

 0
 

 1

Release 7, type B

0 200 600 1000

 4
 

3

 2
 

2 

 1 

 1

 0 

 1 
 2 

Release 9, type C

0 200 600 1000

1

1
0

0

1

2

Release 12, type D

0 200 600 1000

2 

2

1
1

0 0
13

Release 42, type E

0 200 600 1000

2
1

0
01 2 3 3

Release 13, type F

Figure 5 shows 6 of the 68 experiments, each having
occurred under a different atmospheric type. The
figure shows how the atmospheric stability determines
the characteristics of the concentration field. Unstable
atmosphere (A) enhances the spread, thus reducing
the ground level concentration, whereas stable
atmosphere causes much narrower plumes, which
result in higher ground concentrations.

Results
Experiments were performed for each of the 68 prairie
grass releases. The algorithm started by generating
a population of random candidate solutions. Each
candidate solution is a potential source and is encoded
as a vector of eight variables: x, y, z, θ , U, Q, S, and ψ .
For each potential source, the resulting concentration
field is computed by Eq. (10). The fitness score of each
source is defined as the error between the observed
ground concentration and the simulated concentration
at the same locations, computed according to Eq. (9).

The algorithm proceeds by dividing the can-
didate solutions with high and low fitness scores,
and learning patterns (rules) which characterize
the attribute values combinations that discriminate

A B C D E F

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Atmosphere type

E
rr

or

FIGURE 6 | Errors of AQ4SD divided by atmosphere type.

between the two groups. New candidate solutions
are generated according to the learned patterns. The
process continues for 500 iterations. The algorithm
was run using a population of 100 candidate
solutions. At each step, the top and lowest 30%
of the solutions were used as members of the high-
and low-performing groups. Each experiment was
repeated 10 times to study the sensitivity of the

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 231



Advanced Review wires.wiley.com/compstats

001 005 009 013 017 021 025 029 033 036 040 044 048 051 055 059 065

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Experiment ID

E
rr

or

Atmosphere type

A
B
C
D
E
F

FIGURE 7 | Summary of the errors of AQ4SD
for each prairie grass experiment. The atmosphere
type of each experiment is color coded.

algorithm to the initial guess of solutions. The results
are shown also in terms of atmospheric type.

A total of 680 AQ4SD source detections
were performed, namely 10 for each of the 68
experiments. There is a considerably higher number
of experiments of type D, as this was the predominant
atmospheric condition at the time of the releases. In
order to compensate for the different distributions
of experiments, the results are normalized using this
information.

Figure 6 shows a summary of the different
errors, defined by Eq. (9), achieved by AQ4SD as a
function of the atmospheric type. A threshold of 1.0
was assigned as minimum fitness value to recognize
a source, because such value indicates AQ4SD
identifying the source within 50 m of correct solution.
Considerably better results were achieved for atmo-
spheric type D, and worse results for atmospheric type
A and type F. This pattern reflects the accuracy of the
dispersion model (10) to reproduce the concentration
field under different stability conditions. The Gaus-
sian model is expected to perform better in neutral
conditions (D), whereas convective turbulence (A)
and stable stratification (F) involve more complex dis-
persion mechanisms which cannot be accounted for,
resulting in a lack of accuracy. Figure 6 is consistent
with the notion that the algorithm performs better
when the fitness of the dispersion model is higher.

Figure 7 shows a summary for all the 68 prairie
grass experiments. Each atmosphere type is color
coded. With the exception of six experiments (3, 4,
7, 25, 52), each of type A or type F, AQ4SD always
achieves a minimum fitness of 1.0, which was the
target acceptance threshold for this experiment. The
overall average fitness error is 0.6.

Figure 8 shows a summary of the results in
terms of x, y, z, θ (called WA = wind angle), and Q.
For all experiments, the original source was located
at x,y,z = 0, 0, 0. The WA and Q errors are defined,
respectively, as the identified angle minus the real
angle, and the identified Q minus the real Q. Once
again, the atmosphere type is color coded using the
same colors as in Figure 7. The ideal solution would
be all the points located at 0, for all variables. In
the figure, although this is primarily true for most
variables, the strong dependence between y and θ

is evident. The units for the x,y, and z directions
are meters. Therefore, the errors associated with
changes in the z values are actually very small, as
z only varies 10 m at most. There are larger errors
for the alongwind dimension x compared with the
crosswind dimension y. This is to be attributed to the
concentration field which has a larger gradient in the
crosswind direction compared with the alongwind
direction. Note the correlation between the error in
θ and the y dimension. Such behavior exemplifies
the algorithm’s skill at compensating for errors in y
through changes in θ . The variable that seems to be
harder to optimize is Q. Such results are primarily due
to the correlation between Q and U [P1 in Eq. (10)].

DISCUSSION

This article introduces the main concepts of the
AQ methodology and discusses its advantages and
disadvantages. It describes a new implementation of
the AQ methodology, AQ4SD, applied to the problem
of source detection of atmospheric releases. In that
context, AQ4SD is used as main engine of evolution

232  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

−5
00

−3
00

−1
00

0

−5
00

−3
00

−1
00

X

−6
0

−2
02060

Y

10 8 6 4 2 0

Z

−1
000

10
0

E
rr

or
 W

A

−5
00

−3
00

−1
00

0

05010
0

15
0

−6
0

−2
0

0
20

40
60

80
0

2
4

6
8

10
−1

00
0

10
0

0
50

10
0

15
0

05010
0

15
0

E
rr

or
 Q

A
tm

os
ph

er
e 

ty
pe

A B C D E F

FI
G

U
R

E
8

|Pa
ir-

w
is

e
pl

ot
of

di
ffe

re
nt

at
tr

ib
ut

es
us

ed
du

rin
g

th
e

op
tim

iz
at

io
n.

Vo lume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 233



Advanced Review wires.wiley.com/compstats

for an evolutionary computation process aimed at
finding the source of an atmospheric release, using
only a observed ground measurements and a numeric
atmospheric dispersion model. Experiments were per-
formed to identify the source of each of the 68 releases
of the prairie grass field experiment.

The numerical experiments show that in all but
five cases the methodology was able to achieve a
fitness score considered acceptable for the correct
identification of the source. The performance of
the algorithm has been very satisfactory consider-
ing that the error intrinsic in the measured data and
the approximation of the dispersion model. AQ4SD
also proved to be quite efficient in terms of number
of model simulations required for each optimiza-
tion case. This is one of the main advantages of
the proposed methodology compared with traditional
evolutionary algorithms, because a fitness evaluation
for a complete source detection procedure may require
computationally expensive numerical simulations. In
particular, for larger scale dispersion problems, more
sophisticated and computationally expensive mete-
orological and dispersion models need to be run
concurrently to evaluate the fitness of each candidate
solution.45

The proposed methodology has a wide domain
of applicability, not restricted only to the source
detection problem. It can be used for a variety of opti-
mization problems and is particularly advantageous
for those problems where the fitness function evalua-
tion involves a computationally expensive operation.

NOTES
aSome versions of AQ can also be run to generate
rules with the largest amount of attributes (called
characteristic mode), but such mode merely consists
in generating discriminant rules and adding condi-
tions that include all events in the class, but having no
discriminatory information.
bSome versions of AQ sort all or a part of the negative
events according to a distance metric. Although such
mechanism has been shown to generate simpler rules
in specific cases, because of the additional complexity
of defining such distance metrics, which is not always
possible as in the case of nominal attributes, paired
with the additional computational resources required,
the advantage of such sorting is not clear. AQ4SD
can be run with and without sorting, and experiments
have shown no or negligible improvements.

ACKNOWLEDGEMENTS

This material is partly based upon work supported by the National Science Foundation under Grant no: AGS
0849191.

REFERENCES

1. Michalski R. On the quasi-minimal solution of the
general covering problem. Proceesings of Fifth Inter-
national Symposium on Information Processing (FCIP
69), Yugoslavia, Bled, vol A3; October 3–11 1969,
125–128.

2. Michalski R. A theory and methodology of inductive
learning. Mach Learn 1983, 1:83–134.

3. Michalski R. AQVAL/1 computer implementation of a
variable-valued logic system VL 1 and examples of its
application to pattern recognition. First International
Joint Conference on Pattern Recognition, Washington,
D.C., 1973, 3–17.

4. Chilausky R, Jacobsen B, Michalski R. An application
of variable-valued logic to inductive learning of plant
disease diagnostic rules. Proceedings of the Sixth Inter-
national Symposium on Multiple-valued Logic. Logan,
UT: IEEE Computer Society Press Los Alamitos; 1976,
233–240.

5. Steinberg D, Colla P. CART: Tree-structured Non-
parametric Data Analysis San Diego, CA: Salford
Systems; 1995.

6. Quinlan J. C4.5: Programs for Machine Learning. San
Mateo: Morgan Kaufmann; 1993.

7. Breiman L, Friedman J, Stone CJ, Olshen RA. Classifi-
cation and Regression Trees: Wadsworth International
Group; 1984.

8. Michalski R, Mozetic I, Hong J, Lavrac N. The multi-
purpose incremental learning system AQ15 and its test-
ing application to three medical domains. Proceedings
of the 1986 AAAI Conference, Philadelphia, PA vol.
104; August 11–15 1986, 1041–1045.

9. Kaufman K, Michalski R. The AQ18 Machine Learn-
ing and Data Mining System: An Implementation and
User’s Guide. MLI Report. Fairfax, VA: Machine
Learning and Inference Laboratory, George Mason
University; 1999.

234  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010



WIREs Computational Statistics Algorithm quasi-optimal learning

10. Mitchell T. Machine Learning. New York: McGraw-
Hill; 1997.

11. Cervone G, Panait L, Michalski R. The development
of the AQ20 learning system and initial experiments.
Proceedings of the Fifth International Symposium on
Intelligent Information Systems, June 18-22, 2001,
Zakopane, Poland: Physica Verlag; 2001, 13.

12. Keesee APK. How Sequential-Cover Data Mining Pro-
grams Learn. College of Science. Fairfax, VA: George
Mason University; 2006.

13. Austern M. Generic Programming and the STL: Using
and Extending the C++ Standard Template Library.
1998.

14. Gamma E, Helm R, Johnson R, Vlissides J. Design Pat-
terns: Elements of Reusable Object-Oriented Software.
Westford, MA: Addison-Wesley Reading; 1995.

15. Bloedorn E, Wnek J, Michalski R. Multistrategy con-
structive induction: AQ17-MCI. Rep Mach Learn Infer
Lab 1993, 1051:93–4.

16. Wnek J, Michalski R. Hypothesis-driven constructive
induction in AQ17-HCI: a method and experiments.
Mach Learn 1994, 14:139–168.

17. Cervone G, Franzese P, Ezber Y, Boybeyi Z. Risk
assessment of atmospheric emissions using machine
learning. Nat Hazards Earth Syst Sci 2008,
8:991–1000.

18. Holland J. Adaptation in Natural and Artificial Sys-
tems. Cambridge, MA: The MIT Press; 1975.

19. Goldberg DE. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading, MA: Addison
Wesley; 1989.

20. Bäck T. Evolutionary Algorithms in Theory and Prac-
tice: Evolutionary Straegies, Evolutionary Program-
ming, and Genetic Algorithms. Oxford, NY: Oxford
University Press; 1996.

21. Michalewicz Z. Genetic Algorithms + Data Structures
= Evolution Programs. 3rd ed. Berlin: Springer-Verlag;
1996.

22. Fogel L. Intelligence Through Simulated Evolution:
Forty Years of Evolutionary Programming. Wiley Series
on Intelligent Systems. New York: John Wiley & Sons,
Inc.; 1999.

23. De Jong K. Evolutionary computation: a unified
approach. Proceedings of the 2008 GECCO Confer-
ence on Genetic and Evolutionary Computation. New
York: ACM; 2008, 2245–2258.

24. Darwin C. On the Origin of Species by Means of Natu-
ral Selection, or the Preservation of Favoured Races in
the Struggle for Life. London: Oxford University Press;
1859.

25. Ashlock D. Evolutionary Computation for Modeling
and Optimization. Berlin Heidelberg: Springer-Verlag;
2006.

26. Grefenstette J. Incorporating problem specific knowl-
edge into genetic algorithms. Genetic Alg Simul Anneal-
ing 1987, 4:42–60.

27. Grefenstette J. Lamarckian learning in multi-agent
environments. Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufmann
Publishers Inc., San Francisco, CA, 1991.

28. Sebag M, Schoenauer M. Controlling Crossover
through Inductive Learning. Lecture Notes in
Computer Science. London: Springer-Verlag; 1994,
209–209.

29. Sebag M, Schoenauer M, Ravise C. Inductive learning
of mutation step-size in evolutionary parameter opti-
mization, Lecture Notes in Computer Science. London:
Springer-Verlag; 1997, 247–261.

30. Reynolds R. Cultural Algorithms: Theory and Applica-
tions. Mcgraw-Hill’S Advanced Topics In Computer
Science Series. Maidenhead, England: McGraw-Hill
Ltd.; 1999, 367–378.

31. Hamda H, Jouve F, Lutton E, Schoenauer M, Sebag M.
Compact unstructured representations for evolutionary
design. Appl Intell 2002, 16:139–155.

32. Lozano J. Towards a New Evolutionary Computation:
Advances in the Estimation of Distribution Algorithms:
Springer; 2006.

33. Michalski R. Learnable evolution: combining symbolic
and evolutionary learning. Proceedings of the Fourth
International Workshop on Multistrategy Learning
(MSL’98). 1999, 14–20.

34. Cervone G, Michalski R, Kaufman K, Panait L. Com-
bining machine learning with evolutionary computa-
tion: Recent results on lem. Proceedings of the Fifth
International Workshop on Multistrategy Learning
(MSL-2000). Portugal: Guimaraes; 2000, pp. 41–58.

35. Cervone G, Kaufman K, Michalski R. Experimental
validations of the learnable evolution model. Proceed-
ings of the 2000 Congress on Evolutionary Computa-
tion, LaJolla, CA, vol. 2; July 16–19 2000.

36. Pudykiewicz J. Application of adjoint tracer transport
equations for evaluating source parameters. Atmos
Environ 1998, 32:3039–3050.

37. Hourdin F, Issartel JP. Sub-surface nuclear tests moni-
toring through the ctbt xenon network. Geophys Res
Lett 2000, 27:2245–2248.

38. Enting I. Inverse Problems in Atmospheric Constituent
Transport. Cambridge, NY: Cambridge University
Press; 2002, 392.

39. Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data
Analysis: Chapman & Hall/CRC; 2003, 668 pp.

40. Chow F, Kosović B, Chan T. Source inversion for
contaminant plume dispersion in urban environments
using building-resolving simulations. Proceedings of the
86th American Meteorological Society Annual Meeting,
Atlanta, GA, January 2006, 12–22.

Volume 2, March/Apr i l 2010  2010 John Wi ley & Sons, Inc. 235



Advanced Review wires.wiley.com/compstats

41. Senocak I, Hengartner N, Short M, Daniel W. Stochas-
tic event reconstruction of atmospheric contaminant
dispersion using Bayesian inference. Atmos Environ
2008, 42:7718–7727.

42. Haupt SE. A demonstration of coupled recep-
tor/dispersion modeling with a genetic algorithm.
Atmos Environ 2005, 39:7181–7189.

43. Haupt SE, Young GS, Allen CT. A genetic algorithm
method to assimilate sensor data for a toxic contami-
nant release. J Comput 2007, 2:85–93.

44. Allen CT, Young GS, Haupt SE. Improving pollutant
source characterization by better estimating wind direc-
tion with a genetic algorithm. Atmos Environ 2007,
41:2283–2289.

45. Delle Monache L, Lundquistand J, Kosović
B, Johannesson G, Dyer K, et al. Bayesian inference
and markov chain monte carlo sampling to reconstruct
a contaminant source on a continental scale. J Appl
Meteor Climatol 2008, 47:2600–2613.

46. Pasquill F. The estimation of the dispersion of wind-
borne material. Meteorol Magazine 1961, 90:33–49.

47. Pasquill F, Smith F. Atmospheric Diffusion. Chichester,
UK: Ellis Horwood; 1983.

48. Arya PS. Air Pollution Meteorology and Dispersion.
Oxford, NY: Oxford University Press; 1999.

49. Barad M, Haugen D. Project Prairie Grass, A Field
Program in Diffusion: United States Air Force, Air
Research and Development Command, Air Force Cam-
bridge Research Center; Cambridge, MA, 1958.

236  2010 John Wi ley & Sons, Inc. Volume 2, March/Apr i l 2010


