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Abstract. Supervised machine learning algorithms are used to classify pixels of a multi-sensor
remote sensing dataset comprising RADAR and optical measurements for central Sudan. A total
of 19 layers were used, 16 RADAR bands from RADARSAT DN, and texture bands acquired on
13 December 2008 (dry season) and on 2 June 2009 (wet season), and three optical bands
acquired by Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
on 25 February 2009. Three different machine learning supervised classification algorithms
were used to test the advantage of combining RADAR and optical data: a decision rule, a deci-
sion tree, and a naive Bayesian. In all the experiments performed, a combination of RADAR and
optical bands leads to higher predictive accuracy and better land cover classification than either
sensor used independently. The decision rule classifier performed best among the three methods
used.© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063597]
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1 Introduction

Formulating general hypotheses from limited observations is one of the fundamental principles
of scientific discovery. As more spaceborne remote sensing data become available due to a
higher number of sensors with increased spatial and spectral resolutions, better storage and shar-
ing infrastructure, and deeper understanding of the physical processes, analyzing data to generate
hypotheses becomes a crucial and difficult task in most problem solving applications. An
improved ability to extract accurate information from remote sensing can be accomplished
by two often separate approaches: 1. improved processing strategies such as those provided
by machine learning and 2. improved data sets such as multi-temporal or multi-sensor. This
study integrates these two approaches by employing different machine learning classifiers with
data from RADAR and optical sensors.

The proposed methodology is based on machine learning classifiers that develop general
hypotheses from labeled pixels, and uses the learned knowledge to classify unknown pixels.
Three different classifiers are tested: a decision rule induction algorithm, a decision tree learner,
and a naive Bayesian classifier. The data used in this study are a fusion of RADAR and optical
measurements.

The decision tree and naive Bayesian classifiers were used because they have been exten-
sively used in the literature (e.g., Refs. 1 and 2). The decision rule classifier was chosen because
it is often under-represented when classifiers are compared, and it has the theoretical advantage
of a richer representation language, which can lead to more sophisticated partitioning of the
solutions pace, and also a higher understandability of the learned knowledge as rules are usually
easier to inspect and validate than trees and probabilities. Therefore, the contributions of the
article can be summarized as follows:
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(1) A theoretical analysis of the strengths and weaknesses of three different classifiers, one
of which has often been under-represented.

(2) The generation and analysis of a fused RADAR and optical dataset.
(3) A performance analysis of the classifiers over a problem of high complexity.
(4) A discussion of how the fused data affects the predictive accuracy of pixel

classification.

1.1 Land Cover Classification

Supervised learning consists of analyzing examples and counter-examples for each land cover
class, and creating generalizations of the data to learn concepts. These concepts describe patterns
in attribute space, and can be in the form of statistical summarizations, probabilities, network
graphs, or inductive rules, to classify unknown pixels. For the case of remote sensing land cover
classification, generally each pixel is described by a vector of attributes corresponding to the
reflectivity of the pixel in different parts of the electromagnetic (EM) spectrum. The attribute
space can be viewed as a cube, where the vertical and horizontal dimensions correspond to the
spatial resolution, and the depth is the spectral resolution of the data.

Statistics and machine learning techniques have been used extensively for the supervised
land cover classification problem of remote sensing data (e.g., Refs. 3 to 7). Rogan et al.1

have tested different machine learning methods for mapping land cover modifications. They
have shown that the overall methodology is sound, and different algorithms present advantages
and disadvantages depending on the type, quality, and size of data used. One of the algorithms
they investigated generated decision rules, but only as a post-processing operation for the deci-
sion tree learned. In fact, although it is possible to transform decision trees to decision rules, they
usually use a weaker representation language than when decision rule algorithms are employed.
For example, rules converted from trees normally cannot include internal disjunctions, because
these are not representable in a tree structure.

A different line of research concentrates on augmenting the spectral information of each pixel
with additional data. Walter8 described an object-based change detection approach for the clas-
sification of remote sensing multispectral data. Instead of classifying single pixels, it acts on
groups of pixels that represent already existing objects in a geographical information system
(GIS) database. Texture information was also investigated as a mean to improve the accuracy
of land cover classification algorithms.9–11 Puig and García12 explored different ways for extracting
texture information for image classification. They concluded that pixel-based texture
classification can be significantly improved by evaluating a given texture method over multiple
windows of different size and then by integrating the results through a classical Bayesian scheme.

1.2 RADAR Data Fusion

Central to the land cover classification problem are the quality and characteristics of the remote
sensing data used. Traditional means of providing reliable land cover/use information via remote
sensing has been primarily undertaken by multispectral systems such as Landsat, SPOT,
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and IRS
AWiFS. These systems are not able to fully satisfy the demands for providing land cover/
use information for some areas around the world. However, with the availability of operational
spaceborne RADAR systems, these limitations may be removed.

RADAR systems have some advantages over traditional multispectral sensors. The longer
wavelengths of RADAR are capable of penetrating atmospheric conditions that limit traditional
spaceborne optical and multispectral systems.13 This longer wavelength operational character-
istic holds enormous data collecting potential for many geographic areas around the world that
are often obscured by cloud cover or areas of high latitudes with limited daylight.

The surface interaction of RADAR is very different than optical data, thus providing unique
information about ground features. The response of RADAR is more a function of surface rough-
ness, geometry, and internal structure, as opposed to surface reflection with optical wavelengths.
The variation in RADAR backscatter from a feature may be a result of incident angle, look
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direction, moisture on the surface, date, or the physical composition of the feature itself. Back-
scatter is also strongly influenced by orientation of the feature to the incoming RADAR signal.

Conversely, one of the difficulties with the analysis of RADAR data is that most recent
RADAR spaceborne systems only collected data using a single wavelength with a fixed polar-
ization. Hence only one component of the total surface scattering is thereby being measured,
while any additional information contained within the returned RADAR signal is lost.14,15 More
recent systems, such as the Japanese ALOS PALSAR and the Canadian RADARSAT-2, include
an increased number of polarizations. Imagery acquired under different polarizations will obtain
different backscatter responses and different informational content.16–19

Textural information may be as important as spectral information in RADAR, as the infor-
mation content of an image resides in both the intensity (spectral) of individual pixels and the
spatial arrangement of the pixels.20,21 Standard image classification procedures used to extract
information from remotely sensed images usually ignore this spatial information and are based
on purely spectral characteristics. Such classifiers will be ineffective when applied to land cover/
use classes such as residential and urban areas that are largely distinguished by their spatial rather
than their spectral characteristics.22,23 The advantages of using derived RADAR measures, such
as texture measures at different window sizes, in comparison to original RADAR data have been
demonstrated by Haack et al.24 and Herold et al.25 Textural information may be used in combi-
nation with the spectral measurements of a wavelength for analysis.26,27 Texture is particularly
useful because it indicates the local variability of gray level in the spatial domain, revealing
unique information about the ground feature.28

The availability of remotely sensed data for the same geographic area obtained from separate
sensors, operating in different portions of the electromagnetic spectrum, such as Landsat and
RADARSAT, has increased greatly. This, along with improved technology for the processing
and fusing of such separate data sets, has made the synergies between optical and RADAR data
for land applications of greater practical importance.29–31 The fusing of data from different sen-
sors is done in an attempt to generate an interpretation of a geographic area that is not obtainable
from any single sensor alone and also to reduce the uncertainty associated with data from a single
source.32–34

2 Study Site and Data

The study site as described in the following was in central Sudan, a rapidly expanding area,
familiar to the authors, who contains distinct land cover types, and thus is particularly suited
for testing the proposed methodology.

The data from both sensors were acquired at different spatial resolutions and fused by geor-
ectifying and resampling the pixels to a common 15 m grid. The integrated data consist of 19
bands with each band containing 2103 columns by 2615 rows of pixels. The full data set con-
sisted of three ASTER and two dates of RADARSAT with derived texture. Different datasets
were created to individually test ASTER data (A09), 2008 RADARSAT data (R08), and 2009
RADARSAT data (R09), and their combinations [(R08þ A09 and R09þ A09); for example,
see Table 1].

2.1 Wad Madani

The study site includes the city of Wad Madani, the capital of the Al Jazirah state in east-
central Sudan. Wad Madani is located on the west bank of the Blue Nile River, approximately
136 km southeast of the Sudanese capital city, Khartoum. The city is the center of the Al
Jazirah cotton-growing region which results from one of the largest agriculture irrigation pro-
jects in the world, started by the British in 1925. The waters of the Blue Nile River are currently
directed through more than 4300 km of irrigation canals and ditches. With Wad Madani as
its hub, this region is an important world cotton producer, in addition to prosperous local trade
in wheat, peanuts, barley, and livestock. Regional populations surround the banks of the
White and Blue Nile rivers, with a population concentration of more than 200,000 people
in Wad Madani.
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The diverse range of land covers present in the study area have relatively distinct delineations
between them. Most of the lands to the west of the Blue Nile are agricultural areas, presumably
for cotton or another one of the local crops. The city of Wad Madani has urban features occupy-
ing a peninsula-like area formed by a bend in the Blue Nile. North of Wad Madani and east of the
Blue Nile, land cover tends to often be bare soil with sparse natural shrubs/trees.

2.2 RADARSAT

The first Canadian RADARSAT system has been operational since 1995. It was a C-band,
5.7 cm, single wavelength, and single polarization, horizontal-horizontal (HH), system.
RADARSAT-2 was launched in December 2007 and was a quad polarization system [HH, hor-
izontal-vertical (HV), vertical-horizontal (VH), and vertical-vertical (VV)]. Both sensors can
collect data at various depression angles, spatial resolutions, and swath widths. RADARSAT
can collect data with spatial resolutions ranging from about 1 × 2 m to 100 × 160 m and
with a scene size from 8 by 18 km to 500 by 500 km. The sensor can also collect data in various
incidence angles.

The data for this study are fine quad-pol single look complex (SLC) with a spatial resolution
of 5.4 by 8.0 m and a scene size of 25 by 25 km. The RADARSAT data were originally collected
as 11 bit data but were compressed to 8 bit for this analysis. The first image data, 13 December
2008, were collected during the dry season when most crops are dormant. The second data, 2
June 2009, were collected during the wet season with the crops in full development. One aspect

Table 1 Description of the 19 bands used in the study. H and V indicate RADAR horizontal and
vertical polarization.

Layer ID Dataset ID Name Description

1 R08 RADARSATDec08.b1 HH

2 R08 RADARSATDec08.b2 HV

3 R08 RADARSATDec08.b3 VH

4 R08 RADARSATDec08.b4 VV

5 R08 RADARSATDec08.text.b5 Texture HH

6 R08 RADARSATDec08.text.b6 Texture HV

7 R08 RADARSATDec08.text.b7 Texture VH

8 R08 RADARSATDec08.text.b8 Texture VV

9 A09 Aster.b9 Visible (Green)

10 A09 Aster.b10 Visible (Red)

11 A09 Aster.b11 Infrared

12 R09 RadSatJun09.b12 HH

13 R09 RadSatJun09.b13 HV

14 R09 RadSatJun09.b14 VH

15 R09 RadSatJun09.b15 VV

16 R09 RadSatJun09.text.b16 Texture HH

17 R09 RadSatJun09.text.b17 Texture HV

18 R09 RadSatJun09.text.b18 Texture VH

19 R09 RadSatJun09.text.b19 Texture VV
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of this study was to examine the relative value of the RADAR data at the different seasons. One
difficulty, however, with this analysis is that the ground conditions will be seasonally different
for some classes creating some issues with the comparisons. From the two dates of original
RADAR bands, eight additional bands were created based upon their variance texture over
an 11 × 11 pixel window.

Each of the RADARSAT quad polarization bands will generally have different amounts of
backscatter from the same surface feature as a function of the feature-scattering mechanisms.
Some general observations can be made about the various polarizations.

The like polarization HH band is more capable of penetrating vegetation, particularly crops,
for access to the underlying soil and has been employed for soil moisture studies. The HH also is
more suitable for separating water from ice. The VV band is sensitive to water roughness and
thus more useful for studies of wave height and action. Cross-polarization bands, HV and VH,
are generally weaker in backscatter than like polarization.

These cross-polarization bands are often useful for vegetation discrimination and in parti-
cular for separation of broad-leaved crops from grain crops since the geometries of broad-leaf
vegetation cause multiple-bounce scattering, resulting in some cross-polarized backscatter. Since
the HV backscatter from water surfaces is much reduced compared to the VV backscatter, the
HV channel is very suitable for detecting features on the water surface that create multiple scat-
tering. Examples of such targets are ship superstructures and ice deformations (ridging, fractures,
and rubble).

2.3 ASTER

ASTER is an imaging instrument flying on NASATerra. ASTER is a cooperative research effort
between NASA, Japan’s Ministry of Economy, Trade and Industry (METI), and Japan’s Earth
Remote Sensing Data Analysis Center (ERSDAC). The principal mission of ASTER is to collect
high spatial resolution data of land surface temperature, reflectance, and elevation. ASTER col-
lected 12 spectral channels in three general regions at varied spatial resolutions. Three bands of
visible-near infrared data were collected at 15 m pixel size, six bands in the short wave infrared at
30 m, and five thermal bands at 90 m. The system had a 60 km swath and pointable sensors
capable of providing stereo coverage. For this study, three bands for visible green, visible red,
and near infrared at 15 m were obtained on 25 February 2009.

2.4 Training and Testing Regions

Twenty-one different regions were selected from the data and classified into four different land
cover types: bare soil, agriculture, urban, and water. From these, 11 regions were used for train-
ing the classifier (calibration), and the remaining 10 regions were used for testing the learned
hypotheses (validation). The regions were selected because it was possible to clearly distinguish
between the different cover types, thus not introducing significant noisy pixels. A different num-
ber of regions was selected for training and testing in order to keep a 1∶2 ratio between the
number of training and testing pixels. For example, there are three regions for the training
set of agriculture (1865 pixels total) and two regions for bare soil (1485 pixels total).

Table 2 summarizes the number of pixels for the training and testing regions used, and their
cumulative sizes. Notice that in some cases (e.g., Training-Agriculture) there are three regions
used, while in other cases (e.g., Testing-Urban) there are two regions used. Figure 1(a) shows the

Table 2 Number of pixels for the training and testing regions used (either 2 or 3 for each class).

Type Agriculture Bare soil Urban Water Total

Training 579þ 612þ 674
¼ 1865

560þ 925
¼ 1485

608þ 1121þ 1002
¼ 2731

507þ 757þ 170
¼ 1434

7515

Testing 809þ 2268þ 798
¼ 3875

491þ 1567þ 2063
¼ 4121

2040þ 1873
¼ 3913

1628þ 1375
¼ 3003

14,912
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study area, along with the training (indicated with an inscribing circle) and testing areas. Addi-
tionally, 62,500 pixels were uniformly selected from the original data for a final classification of
the entire scene.

The training and testing data consist of the spectral values of the pixels of the selected
regions. Each row represents a pixel, and is represented with 20 values, one for each of the
19 bands, plus the class information, indicating which region (e.g., urban) the pixel belongs to.

3 Methodology

Machine learning classifiers are used to learn hypotheses that discriminate the spectral charac-
teristics of the four land cover classes. The input information includes labeled data or, in other
words, data that are already assigned to a particular class or group. Unlike clustering, a form of
unsupervised learning whose goal is dividing unlabeled data into distinct classes, in supervised
learning, labeled data are generalized to identify the characteristics of the entire class.

In its simplest form, given two sets of multivariate descriptions, or events, P1 : : : Pn and
N1 : : : Nm, machine learning classifiers find rules that cover all P examples (also known as posi-
tive events), and do not cover any of the N examples (also known as negative events). More
generally, each multivariate description is a classified event of type x1; : : : xk, and c, where
each x is an attribute value, and c is the class it belongs to. For each class c, positives are
all the events that belong to class c, and negatives are all the events belonging to the other classes.

During the learning phase, all the pixels belonging to the class for which the hypotheses are
being generated are the positives, and all pixels belonging to the remaining three classes are the
negatives. The learned hypotheses are used to predict the class of the testing data. An estimation
of accuracy is provided by comparing the predicted and truth value. The results are provided in

Fig. 1 (a) Image of the Wad Madani area. The training (circled) and testing areas are shown for
each of the four cover types, (b) scene prediction using JRip, (c) scene prediction using J48, and
(d) scene prediction using Naive Bayesian.
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terms of predictive accuracy, a value indicating the percentage of correct predictions on the test-
ing data, and using a confusion matrix, showing the overall summary of the class predictions for
each of the land cover types. When a good model is identified, it is used to predict all pixels in the
scene. The overall goal can be summarized as providing labels for all the pixels, while providing
labels only for a small portion of the pixels through the training data.

Supervised machine learning classification is a general paradigm that can be implemented
using different algorithms. In this paper, we have investigated three different general methodol-
ogies: decision rules, decision trees, and naive Bayesian. The learning algorithms were imple-
mented using the Waikato Environment for Knowledge Analysis (WEKA) library (http://www
.cs.waikato.ac.nz/ml/weka/). WEKA is a collection of machine learning algorithms for data
mining tasks.2,35–37 WEKA contains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization. It is also well-suited for developing new machine
learning schemes.

3.1 JRip: Decision Rules

JRip is a propositional rule learner, and is the WEKA implementation of the repeated incremen-
tal pruning to produce error reduction (RIPPER), proposed by Cohen38 as an optimized version
of incremental reduced error pruning (IREP). The rules of RIPPER are used to classify an
unknown event into one of the original training classes.

The learning process is based on an iterative loop that 1. generates new conditions, 2. prunes
them, and 3. optimizes them. The process stops when all positive examples are covered, or when
a large error rate is detected (usually ≥50%). During the learning process, different measures are
used to evaluate the quality of the learned descriptions and are based on information gain and
coverage of positive and negative examples. One of the main advantages of RIPPER is the highly
descriptive rules that make it possible to inspect and validate the learned knowledge. RIPPER
can learn rules from data that contain both numerical and categorical data. Discretization of
continuous variables is automatically performed during the learning process, which makes RIP-
PER suitable for use with numerical data, such as the remote sensing data employed in this study.

Each RIPPER rule takes the form of

conclusion←consequent∶annotation; (1)

where conclusion is the group class (e.g., urban), consequent is a conjunction of attribute relation
conditions, and annotation is a summary of how many positive (p) and negative (n) events from
the training set the rule covers. The annotation is not a measure of predictive ability of the rules,
but how complete and consistent they are with regard to the training set. Each class can have (and
usually does) multiple rules, called ruleset or cover.

The WEKA implementation of RIPPER differs slightly with respect to the original imple-
mentation. Most importantly, two documented bugs have been fixed that would affect the ruleset
size and accuracy slightly.35

3.2 J48: Decision Trees

J48 is the WEKA implementation of the C4.5 trees induction algorithm, proposed by Quinlan39

as an improved version of the earlier ID3 algorithm, developed by the same author. J48 learns
decision trees from labeled data by using the concept of information entropy.40

The learning process consists in a progressive partition of the search space, where at each step
a decision is made to divide the search space in smaller areas, and continues until each area
contains only events of the same class. C4.5 is thus a “divide and conquer algorithm” because
when each split is made, the search space is subdivided into smaller problems (divide) and each
subproblem is solved individually (conquer). To decide which attribute-value combination to use
for the split, C4.5 computes the entropy for each of the attributes and chooses the combination
with the highest value. The leaves of the tree indicate the decision class for the entire area
described by the repetitive splits. This first part of the algorithm is based on an inductive general-
ization step, where single instances are generalized to correspond with areas. This generalization

Cervone and Haack: Supervised machine learning of fused RADAR and optical data . . .

Journal of Applied Remote Sensing 063597-7 Vol. 6, 2012

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 11/19/2012 Terms of Use: http://spiedl.org/terms

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/


step is followed by a specialization step, called pruning, in which some areas are enlarged and
some splits removed in order to simplify the tree, with the expenses of introducing some incon-
sistencies.

J48 can learn trees with data that contains numerical and categorical data, noise, and missing
data. Numerical data do not require discretization.41

The classification of an unknown event consists in checking all conditions, starting from the
root. The leaves of the tree indicate the predicted class for the unknown event. Although it is
possible to convert the learned trees into rules, the resulting descriptions are usually expressed
in simpler representation language. For example, C4.5 rules only allow for atomic relationships
between attributes and possible values and do not allow for internal disjunctions or multiple ranges.

The main advantage of “divide-and-conquer” algorithms is that they are very fast, because at
each step they divide the problem into smaller ones, thus always analyzing a smaller number of
events. However, the main methodological disadvantage is that consecutive splits are made on a
decreasing number of examples, which translates into decisions made with a smaller amount of
information. In contrast, decision rule learners such as RIPPER consider all the search space at
each iteration, making the algorithm considerably slower, but ensuring that all hypotheses are
learned with the maximum amount of information available.

3.3 NB: Naive Bayesian Classifier

NB is the WEKA implementation of a classic naive Bayesian classifier. It is a probabilistic clas-
sifier which uses Bayes’ theorem to assign events to classes.40,42,43

NB collects frequency counts of training events and builds statistics for each band. The clas-
sification of an unknown event is made by comparing the attribute values of the events with the
statistics of each class. The class with the highest similarity is chosen.

The method is called “naive” because of the assumption that it is possible to build statistics
for every attribute, and it assumes a full independence among all attributes. In practice, the meth-
odology has proven to work well on a variety of problems, and it is considered a very effective
supervised classifier.43

4 Results

Experiments were performed to test different combinations of RADAR and optical data for each
of the three machine learning classifiers used. The learned hypotheses were used to predict the
land cover class for the entire scene.

4.1 Theoretical Analysis of the Algorithms

Experiments were performed to test the three classifiers on a suite of five datasets normally used
in machine learning to compare the performance of algorithms, and maintained by the University
of California at Irvine (UCI). The results were compared in terms of predictive accuracy (PA),
which indicates the number of correct classifications over the total number of classifications, and
relative absolute error (RAE), which is defined as

RAE ¼
XN

i¼0

jPi − Tij
jT̄ − Tij

; T̄ ¼
XN

j¼1

Tj; (2)

where P is the predicted values, T is the target values. RAE ranges from 0 to infinity, and the best
result is obtained when the numerator is equal to 0, leading to RAE ¼ 0.

PA, expressed in %, is usually a good indication of the performance of the algorithm, but does
not quantify well the results of very skewed cases. For example, suppose a simple problem with
1000 elements equally distributed among two classes, A and B. If an algorithm classifies all events
as class A, it will have a PA of 50%, since half of the classifications are correct. However, its RAE
is 100%, as it failed to provide any discriminatory information between the classes. Conversely, if
all 1000 events are correctly classified, the PA is equal to 100% and the RAE is equal to 0%.

The five datasets were chosen to test the three algorithms under different conditions, such as
number of variables, their domain size, the number of events, and the size of the output classes.
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The tests were performed using a 10-fold cross-correlation, where the events are divided into 10
sets of unique events, and each time one of the set is used for learning, and the other 9 used for
testing. The process is repeated 10 times, and the results show the average performance of the
runs. This cross-correlation testing scheme is used to minimize a bias which might be introduced
by selecting specific training and testing events.

Table 3 shows the cumulative results for all three classifiers, along with general information
on the size and characteristics of the data. As expected, there is not a clear winner, and all three
algorithms are able to outperform the others in specific cases, although very narrowly in most
cases. One notable exception is the supermarket dataset, where JRip outperformed by a great
margin both NB and J48. In comparison, both NB and J48 have an error rate of 100% and
classify all events as members of one class. The main characteristic of this dataset with respect
to the others is the larger number of events (4627). JRip also outperforms all other methods using
the Glass datasets, which has the characteristics of a larger output class size (6). These results of
JRip are particularly important because in the problem of pixel classification, it is usually
required to analyze a large number of events, and with a multi-variate output class size.

Although the experimental analysis provides insights on the performance of the algorithms, it
is necessary to go beyond PA and RAE and understand what are the main limitations associated
with different learning classifiers. Although a full analysis of the learning strategies goes beyond
the scope of this paper, a short discussion is provided to direct the reader to the important char-
acteristics that should be taken into consideration.

4.1.1 Learning bias

Perhaps the most important aspect to take into consideration is the learning or inductive bias.
This consists of the learning strategy and set of assumptions that the algorithm uses when learn-
ing descriptions.40 The algorithms used have very different learning biases, which help explain
why their performance over the experimental dataset vary. It is important to remember that all
classification algorithms used (and most classification algorithms in general) use forms of induc-
tive learning when generating general descriptions from limited observations. Unlike deductive
learning, where given the truth values of the premises it is possible to determine with absolute
certainty the truth value of the conclusion (modus ponens in logic), in inductive learning the truth
value of the learning process cannot be guaranteed. This is why it is very important to understand
and test the learned descriptions to assess their validity.

4.1.2 Representation language

Another very important characteristic is the language used to represent the learned descriptions.
Decision rule classifiers, like RIPPER38 or AQ,44,45 use a very complex representation language,
where descriptions are conjunctions of attribute-value relations. Unlike neural networks, which
are black boxes and use a representation language which cannot be easily visualized, decision

Table 3 Predictive accuracy (PA) (%) and relative absolute error (RAE) (%) computed using a 10-
fold cross validation method for the JRip, J48, and NB classifiers over several testing datasets.

Dataset # Events PA # Variables RAE # Classes PA

JRip J48 NB

RAE PA RAE PA RAE PA

Ionosphere 351 35 2 90 31 91 20 83 38

Glass 214 10 6 69 54 67 48 49 73

Diabetes 768 9 2 76 75 74 69 76 63

Labor 57 17 2 77 49 74 70 89 23

Supermarket 4627 217 2 77 68 64 100 64 100

Numbers in bold identify the best results.

Cervone and Haack: Supervised machine learning of fused RADAR and optical data . . .

Journal of Applied Remote Sensing 063597-9 Vol. 6, 2012

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 11/19/2012 Terms of Use: http://spiedl.org/terms



rules can be inspected and validated by human experts. Although decision tree classifiers, such
as C4.5, can convert the learned trees into rules, the resulting descriptions are less compact and
composed of atomic relations (e.g., [x ¼ a]) and usually cannot include internal disjunctions
(e.g., [x ¼ a or b]).

There is usually a tradeoff between richness of the representation language, ability to repre-
sent complex descriptions, and complexity of the algorithms. In general, decision rule algorithms
use logical inference to learn descriptions, which is arguably one of the most difficult strategies.
However, they are able to learn “parallel-axis descriptions.” For example, assuming a Cartesian
coordinate system, and points distributed in a circle, a decision rule can only approximate the
concept by using rectangles. A transformation of the coordinate system (e.g., into polar coor-
dinates) must be first performed to correctly represent the concept. On the other hand, a neural
network is likely to correctly learn a circular pattern, at the expense of not allowing for an inspec-
tion of the learned knowledge.

4.1.3 Speed and scalability

Even with modern computers, the speed at which the algorithms can learn descriptions and their
ability to work with ever larger amounts of data is paramount. Mathematical-based methodol-
ogies, such as support vector machines (SVM) and Bayesian classifiers, are usually among the
fastest methods available because mathematical operations have a low complexity and can be
very efficiently implemented. Decision rule classifiers, on the other hand, have a much higher
complexity due to the iterative nature of the logic operations.

Scalability depends not only on the number of training events, which is usually one of the
most important parameters. In remote sensing pixel classification, in fact, there could be hun-
dreds of thousands or millions of pixels in a single image. However, the number of observations
is only one of the dimensions that tests the scalability of the algorithms. The number of attributes
in each observation, their type, and domain size also play a crucial role. Some algorithms are in
fact better suited to work with numerical values, others work best with categorical ones, and
others can work with both types. Some algorithms have been designed specifically to work
with attributes with very large domain sets (e.g., attribute X is “items in a supermarket”).

4.1.4 Incremental learning

Decision rule learners have the intrinsic advantage of being able to refine previous rules as new
training data become available. Refinement of rules involves adding or dropping conditions in
previously learned rules, or splitting a rule in a number of partially subsumed rules. The main
advantage is that modification in a rule of the cover for a class does not affect the other rules in
the cover. In contrast, although possible, it is more complicated to update a tree as it often
involves several updates that propagate from the leafs of the tree all the way to the root. Addi-
tionally, the resulting tree might be suboptimal and very unbalanced, prompting for a complete
reevaluation of each node. Mathematical-based techniques depend on the strategy used. Methods
based on Bayesian inference usually do not cope well, since the a priori probabilities must be
recomputed as new data becomes available.

4.1.5 Input background knowledge

One area of study that has received less attention is how to convey to the algorithm a set of
conditions or constraints that are known and should be taken into consideration during the
learning process. This feature is particularly important when there is an existing knowledge of
the data, or constraints on the attributes, which can lead to a simpler knowledge and a faster
execution.

4.2 Combining RADARSAT and ASTER Data

Experiments were performed to test the hypothesis that a combination of RADAR and optical
data lead to higher PA than either of the two datasets alone. Different datasets were created to test
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the PA of each source individually (A09, R08, and R09), and their various combinations
(R08þ A09 and R09þ A09).

Figure 2 shows the PA obtained by different combinations of RADARSATand ASTER data.
The highest PA is found by a combination of RADAR and optical data paired with the JRip and
NB classifiers. The PA of the combined RADARSAT and ASTER datasets is about 10% higher
than RADARSAT alone and about 20% higher than ASTER alone. There is also a difference
between the RADARSAT 2008 and 2009 datasets when used alone, with the newer, wet season
data yielding a PA 5% higher than the older, dry season dataset. However, when paired with the
ASTER data, the 2009 RADARSAT data are only marginally better. J48 was consistently the
lowest performer with any of the datasets, with the exception of the R08 where it outperformed
NB, and the only classifier not able to reach 95% accuracy (indicated in Fig. 2 with a horizontal
dashed line).

Table 4 shows a summary of all the experiments performed, in terms of number of correct
pixel classifications, the resulting PA, the elapsed time, and the classification confusion matrices.
There are a total of 14,912 testing pixels (Table 2), and PA is expressed as a fraction of the
number of correct classifications divided by the total number of pixels. The highest PA, in excess
of 99%, is obtained by the NB with either combination of RADAR and optical data. Only
slightly lower is the PA obtained by JRip on the same combined datasets. In terms of elapsed
time, NB is the most efficient, being one order of magnitude faster than the other methods.
Whereas both decision trees and decision rules formulate hypotheses through an inductive infer-
ence process, which consists of computationally expensive generalization and specialization
operations, NB learns descriptions by computing probabilities, a much faster operation. How-
ever, the quicker execution time is a tradeoff for descriptiveness and understandability of the
learned hypotheses.

The result of each experiment is also expressed with a confusion matrix that shows the num-
ber of correct and incorrect classifications for each cover class. The rows of the matrix indicate
the true class of the pixels, and the columns the predicted (pred.) class of the pixels. Analyzing a
confusion matrix is possible to determine what are the most common errors. When using ASTER
data alone, all three classifiers have difficulties distinguishing bare soil pixels from urban pixels.
This is indicated by the high number of bare soil pixels (1763 JRip; 1604 J48; 1530 NB) mis-
classified as urban. This class confusion is a result of the dark toned bare soil and urban areas
being spectrally similar as many of the structures are constructed with indigenous material.

Whenusing the 2008RADARSATdata alone, all three classifiersmisclassify a largenumber of
agriculture (1933 JRip; 1894 J48; 1890NB) as urban. This difficultymost likely is a function of the
changing conditions within the fields seasonally and that the 2008 dry season image contains few

Fig. 2 Predictive accuracy obtained by the classifiers using different combinations of RADARSAT
and ASTER data.
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Table 4 Summary of the experiments performed in terms of number of correct classifications,
predictive accuracy (PA), elapsed time and confusion matrix. In the confusion matrix, the columns
indicate the predicted (pred.) classifications, and the rows indicate the true classifications. In the
data label, R corresponds to RADARSAT and A to ASTER followed by the year of acquisition (e.g.,
R08þ A09 ¼ RARASAT 2008 plus ASTER 2009).

Dataset Classifier
Number
correct

PA
(%)

Time
(s)

Pred.

TrueAgric.
Bare
soil Urban Water

R08 JRip 11105 74.47 3.65 1941 0 1933 1 Agriculture

0 3358 33 730 Bare soil

775 0 3138 0 Urban

0 333 2 2668 Water

J48 11153 74.79 1.32 1972 0 1894 9 Agriculture

0 3453 33 635 Bare soil

773 0 3140 0 Urban

0 413 2 2588 Water

NB 10575 70.91 0.11 2015 0 1890 0 Agriculture

3 2849 1 1268 Bare soil

746 0 3167 0 Urban

0 459 0 2544 Water

R09 JRip 12555 84.19 2.47 3647 24 204 0 Agriculture

0 2712 11 1398 Bare soil

456 0 3457 0 Urban

0 229 35 2739 Water

J48 12191 81.75 0.22 3481 100 271 23 Agriculture

0 2386 239 1496 Bare soil

287 0 3626 0 Urban

0 262 43 2698 Water

NB 12260 82.21 0.02 3719 27 129 0 Agriculture

70 2279 1 1771 Bare soil

513 0 3400 0 Urban

10 131 0 2862 Water

A09 JRip 12836 86.07 1.3 3809 0 0 66 Agriculture

14 2304 1763 40 Bare soil

27 164 3722 0 Urban

0 2 0 3001 Water

J48 12674 84.99 0.07 3868 0 7 0 Agriculture

9 2138 1604 370 Bare soil
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Table 4 (Continued).

Dataset Classifier
Number
correct

PA
(%)

Time
(s)

Pred.

TrueAgric.
Bare
soil Urban Water

41 207 3655 0 Urban

0 0 0 0 3003 Water

NB 13140 88.17 0.01 3856 18 1 0 Agriculture

0 2591 1530 0 Bare soil

3 217 3693 0 Urban

3 0 0 3000 Water

R08þ A09 JRip 14640 98.17 0.8 3696 0 145 34 Agriculture

3 4040 38 40 Bare soil

10 0 3903 0 Urban

0 2 0 3001 Water

J48 13597 91.18 0.51 2650 0 1225 0 Agriculture

3 4046 32 40 Bare soil

15 0 3898 0 Urban

0 0 0 3003 Water

NB 14841 99.52 0.08 3817 0 58 0 Agriculture

0 4118 3 1771 Bare soil

6 0 3907 0 Urban

0 4 0 2999 Water

R09þ A09 JRip 14688 98.49 0.58 3788 16 5 66 Agriculture

0 4012 69 40 Bare soil

24 2 3887 0 Urban

2 0 0 3001 Water

J48 13813 92.63 0.16 3629 0 0 246 Agriculture

0 3304 384 433 Bare soil

28 8 3877 0 Urban

0 0 0 3003 Water

NB 14833 99.47 0.02 3873 2 0 0 Agriculture

35 4069 17 0 Bare soil

4 0 3909 0 Urban

6 15 0 2982 Water

Numbers in bold identify the best results.
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agricultural fields. Additionally, NB misclassifies several bare soil pixels (1268) as water, while
JRip and J48misclassify about half, 730 and 635, respectively.When using the 2009RADARSAT
dataalone, all threeclassifiersmake fewer errorsbetweenagriculture andurban, buta largernumber
of bare soil pixels (1398 JRip; 1496 J48; 1771 NB) are misclassified as water.

When combining RADARSAT and ASTER data, the overall results are significantly better
with much fewer classification errors. When using the 2008 RADARSAT and ASTER data, the
only large errors are made by J48, classifying 1225 agriculture pixels as urban, and by NB which
classifies 1771 bare soil pixels as water. When using the 2009 RADARSAT and ASTER data,
JRip and NB obtain nearly perfect PA, whereas J48 misclassifies about 7% of the pixels.

4.3 Band Analysis

One of the main advantages of using a decision rule algorithm such as JRip is the possibility of
inspecting and verifying the learned hypotheses. Equation (3) shows the main rules learned by
the JRip classifier using the training set provided.

Water←ðAster:b11 <¼ 72Þ∶ p ¼ 1431; n ¼ 0 BareSoil←ðAster.b9 <¼ 78Þ and

ðRadSatJun09:text:b19 <¼ 0Þ∶ p ¼ 925; n ¼ 0 ←ðAster:b10 >¼ 113Þ and

ðRadSatJun09:text:b16 <¼ 17Þ∶ p ¼ 550; n ¼ 0

Agriculture←Aster:b9 <¼ 64Þ∶ p ¼ 1569; n ¼ 0 ←ðAster:b9 <¼ 72Þ and

ðRadSatJun09:text:b16 <¼ 44Þ and ðRadSatJun09:text:b18 <¼ 4Þ∶ p ¼ 220; n ¼ 0

Urban←Default∶ p ¼ 2731; n ¼ 0:

(3)

JRip generated a total of 14 rules to cover all four classes. The strongest patterns identified,
defined as rules that cover at least 50 pixels in the positive class, are shown in Eq. (3). A descrip-
tion of how to read and interpret JRip rules is given in Eq. (1).

In JRip, the classification of an unseen pixel (predicting phase) occurs sequentially. Using the
rules in Eq. (3), a pixel is first compared against the rules for the water class, then bare soil and
agriculture, and if none of the rules is matched, then the default class is assigned (urban). For
example, the first rule for bare soil and the first rule for agriculture both include a condition restrict-
ing Aster.b9 band less than 78 and 64, respectively. However, the rules do not overlap, because in
the rule for bare soil, which is matched first, there is a conjunction of two conditions, both of which
must hold. Therefore, when the rule for agriculture is matched, it is implied that not only Aster.b9
must be less or equal to 64 but RADARSATJun09.text.b19 must also be different than 0.

A very strong pattern was obtained for the water class where a single rule covers 1431 out of
1434 training pixels (Table 2). Except for the first rule (water class), rulesets are made of multiple
rules, and in this case it is enough that either of the two rules is satisfied for the classification of the
pixel. For both bare soil and agriculture, all rules are made by the conjunction of two or more
conditions. This indicates that the combination of two or more bands is necessary to correctly pre-
dict a class. In particular, the combinations in the rules include bands from both RADARSAT and
ASTER, further indicating that the union of the two datasets is necessary for better results. Finally,
the default covers all 2731 examples of the urban class, and no examples of the other classes.

Figure 3 shows the spectral characteristics for the four cover classes in the six bands cited in
the JRip rules. No class can be discriminated from the others using a single band, with the excep-
tion of the water class that has uniquely low values in the Aster.b11 band. This corresponds to the
rules learned by JRip; in fact, the only class covered with a single conjunction is the water class.
An inspection of the spectral characteristics of Aster.b11 shows that no class other than water has
any pixels with a value less than 72, exactly what was learned by JRip.

4.4 Assessment of RADAR Data in Dry and Wet Season

Another important aspect of this research is to compare the quality of RADAR data during the
dry and wet season. In most experiments performed, the RADAR data for June 2009,
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corresponding to the wet season, led to better results, both when used alone and when combined
with the ASTER data (see Fig. 2). Significant differences between the December 2008 and June
2009 data are found in the texture bands. In particular, RadSatJun09.text.b5 (December 2008)
and the corresponding RadSatJun09.text.b16 (June 2009) differ the most. Because this particular
band is instrumental in the classification of agriculture and bare soil pixels, it can explain the
large number of bare soil pixels classified as agriculture (158 JRip; 1225 J48; 58 NB) when using
R08þ A09, and the very small number of misclassified pixels (5 JRip; 0 J48; 0 NB) when using
R09þ A09, shown in Table 4.

The crops during the wet season should be better developed and thus exhibit more texture
separating them from the bare soil. During the dry season, those same fields may be fallow and
have similar texture response to the bare soil.

The results for the wet season RADAR, June 2009, are better independently and in
combination with the ASTER data than the dry season RADAR, December 2008. These
differences, however, should be carefully considered as they are to some degree, and likely a con-
siderable degree, a function of changing conditions in the fields during the year. During December
many of the fields have been harvested and are fallow until the following summer. These fallow
fields are spectrally very similar and confused with the bare soil as indicated in Table 4.

4.5 Prediction of the Entire Scene

A sample of 62,500 pixels were selected uniformly over the domain and classified according to
the hypotheses learned by the three classifiers. Figure 1(b), 1(c), and 1(d) shows the entire scene
classified into the four cover classes by JRip, J48, and NB, respectively. Although all three

Fig. 3 Spectral characteristics for the bands used by JRip. Notice the different horizontal scale for
the ASTER (top) and RADARSAT (bottom) graphs.
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classifiers correctly predict the cover of the training and testing areas, JRip seemed to perform
best due to its ability to recognize the river very well. NB, on the other hand, is not able to
classify correctly the water pixels, and only a very small portion of the river is identified.

5 Conclusions

Supervised machine learning classifiers were employed with a fused RADAR and optical dataset
to predict pixels into one of four classes, agriculture, bare soil, urban, and water. Three classifiers
were employed, based on decision rules, decision trees, and naive Bayesian methodologies. Each
classifier was trained and tested over selected regions, and their results compared.

In general, the decision tree rule induction algorithm outperformed the other methods,
achieving both a very high predictive accuracy and overall good entire scene prediction. This
is an important result because decision rules have historically received less attention than the
other classifier methods.

All three classifiers performed best with combined RADAR and optical data. This result is
consistent with results published in the literature that point out that radar information, especially
texture, can lead to better land cover classifications.
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