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This paper analyzes the relationship among different chemical pollutants retrieved from in situ measurements of under-
ground and surface water in a region of possible development. The area of study is the former mine of the Iglesiente
district, which is now a United Nations Educational, Scientific, and Cultural Organization (UNESCO) protected region
in the island of Sardinia (Italy). A full chemical analysis of water/soil samples were collected at the site in 2004. The data
show the presence of several toxic contaminants above the national legal threshold. A symbolic machine learning classifier
is employed to learn strong patterns associated with a high level of arsenic (As) in the soil samples. The patterns discovered
show complex relationships that include both high and low concentrations of different chemicals. The strongest patterns
are found between As and the chemicals which are usually found in the soil. This implies that when As is dissolved
in the water table, it is expected these other chemicals are also present. It emerges that a specific relationship of As–
phosphates is outlined and is clearly shown by applying the symbolic machine learning classifier. This leads to an
understanding of the behavior of these elements in the soil, potential impacts on ecosystems, as well as the pollution
of groundwater. Finally, an assertion of the advantages of the algorithm quasi-optimal learning method is clarified in
term of applicability in such circumstances. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. General problems, associated with former mines (pollution, cleaning, resettling, and reconversion), on the Sardinia island

Since ancient history, Sardinia has been a region of intense mining activities, which have profoundly modified the island’s environ-
ment. Mining in Sardinia goes back six millennia BC, when obsidian mining was the prevalent activity. The hard and precious
volcanic glass, used to shape weapons and tools, was traded along the Mediterranean coasts (Contu, 2000). The following centuries
progressively saw unfolding civilizations, from Phoenician to Roman, interested in the mining resources. From the 18th century until
recently, mining activities both sustained and flourished in the island’s economy, as shown in Figure 1 (Manca and Pireddu, 2005).
The resulting heritage is represented by degraded areas, including excavations and dumping grounds, polluted groundwater, and a
devastated hydrological system.

Initially, the disruption of pumping out the mines caused the galleries to flood, and as a result, the water table rose to the
surface. Consequently, the interaction between water and minerals strongly determines the water quality, which is characterized
by a high level of salinity due to sulfate and acid pH caused by the oxidation of sulfide and high levels of pollutant metals. Acid
mine drainage phenomena are also observed in the area. The main sources of contamination are the tailings stored in mine tun-
nels and abandoned along fluvial banks (Concas et al., 2006). Furthermore, the landfills are also degraded and polluted because
of the toxic materials released by the mining process and progressively stocked in those locations (Progemisa-Geoparco, 2003).
The landfills’ water runoff leaks and dissolves those materials causing them to flow into the river network, leading to a high
concentration of pollution. Surface water mixes with the soil and infiltrates into the groundwater yielding contaminated water
at both the surface and subsurface. Consequently, in this abandoned mining district, because of poor management of environ-
mental issues, significant heavy metal contamination has been observed (Fanfani et al., 2000). Comparison between new and
old data indicates significant heavy metal contamination of superficial waters in the investigated area (Concas et al., 2006).
Moreover, the heavy metal contamination clearly affects the morphological diversity of the pedons, the taxonic, the functional
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pedodiversity, and the soilscape pattern. Consequently, the total arsenic (As) content is very high in most of the soil profiles
considered (Vacca et al., 2012). Furthermore, Costantini et al. (2004) highlighted the high concentration of As and its critical
limit compared with other minerals in the soil and water and found it to be well over the Italian national mandatory limits (Ministero
dell’Ambiente e della Tutela del Territorio, e del Mare, 2006). These concentrations limit the use of the land for public recreation
areas, for industrial and commercial areas, and even for residential areas.

Figure 1. The Geopark’s Area in the island of Sardinia. This figure is available in colour online at wileyonlinelibrary.com/journal/environmetrics
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1.2. An international problem

Arsenic is a natural component of some raw minerals, including lead (Pb), zinc (Zn), and copper (Cu). During mineral mining, As is
released by these minerals and is dispersed into the environment. Moreover, As is responsible for groundwater pollution in many coun-
tries worldwide (MIT, 2002; Ravenscroft et al., 2009). For instance, in Europe, the presence of several main contaminants affecting soil
has been reported by the European Environmental Agency, (2010). They determined that the heavy minerals account figuring that the
heavy metals count for 37.3% of the overall amount of contaminants, of which, As is one. On the other side of the shore, since 1997,
the US Environmental Protection Agency has been using almost 41% of its available funds to classify As sites as polluted, the second
level of attention after Pb, in the National Priority List. (US EPA, 1997, 2004). The consequences are that affected people cope with skin
cancer and persistent body poisoning.

Relationships between chemical compounds and As have been described by Costantini et al. (2004). in Sardinia’s mine district and have
been shown through correlation matrices and principal component analysis. Although the correlation matrices simply described the most
significant dependencies, in particular for Pb/As, Zn/As, Cd/As, either in the soil or in the water, a principal component analysis has been
carried out to better explain the variability of the chemical compounds. As shown, As is considered as one of the three components able
to explain the observed pollution. Although the Principal Component Analysis reveals the intrinsic connections of the pollutants, Shlens
(2009) pointed out its limitations based on the multivariate data sets reduction.

In this paper, a relationship is identified to explain the relationship of As with other chemicals observed in the soil/water samples, through
the application of machine learning algorithms. Machine learning algorithms are used in different disciplines to identify non-trivial patterns
in large amounts of data (Mitchell, 1997). They have been used to successfully characterize the source of non-point pollution of groundwater
(Trauth and Xanthopoulos, 1997). Recently, Cordier et al. (2005) used machine learning classifiers to assess the environmental impact from
contaminated water supplies, showing that it is possible to establish a strong link between land use and groundwater contamination.

Here, a symbolic machine learning classifier based on the AQ (algorithm quasi-optimal) methodology (Mitchell, 1997; Cervone et al.,
2010) is used to study the relationship between high levels of As and other chemicals observed in the water/soil samples. The goal is to find
an attribute value relationship between the consequent As (high concentration of As) and the conditions (the other chemicals).

2. METHODOLOGY

A machine learning classifier is used to generalize sets of examples associated with high levels of As against counterexamples associated
with low levels of As. The input data consist of labeled data in a tabular form. The rows are the different soil samples taken at different
locations, and the columns are the concentrations of chemicals measured. Each row of data is assigned a label indicating a level of As below
or above the safety threshold. Unlike clustering, a form of unsupervised learning whose goal is dividing unlabeled data into distinct classes,
classification is a form of supervised learning, where classified data are generalized to identify the characteristics of the entire class (Cervone
et al., 2010).

In its simplest form, given two sets of multivariate descriptions, or events, p1…. pn, and N1 ……. Nm, a symbolic classifier finds rules that
cover all p examples (a.k.a. positive events) and does not cover any N examples (a.k.a. negative events). More generally, each multivariate
description is a classified event of type {x1, … xk}and c, where each x is an attribute value, and c is the class to which it belongs.

In this paper, we used a form of AQ learning (e.g., Cervone and Panait, 2001), a proven machine learning methodology aimed at learning
symbolic decision rules from a set of examples and counterexamples. It was first proposed in the late 1960s to solve the Boolean function
satisfiability problem and was further refined over the following decade to solve the general covering problem (Mitchell, 1997). In its newest
implementations, it is a powerful but yet little explored methodology for symbolic machine learning classification. It has been applied to
solve several problems from different domains, including generating individuals within an evolutionary computation framework. The
algorithm learns from examples (positives) and counterexamples (negatives) and from patterns (a.k.a. rules) of attribute values that discrim-
inate the characteristics of the positive events with respect to the negative events. Such patterns are generalizations of the individual positive
events and depending on the AQ’s mode of operation may vary from being totally complete (covering all positives) and consistent (not cov-
ering any negatives) to accepting a trade-off of coverage to gain simplicity of patterns. The AQ is a general purpose symbolic machine
learning classifier that learns induction rules from a set of examples and counterexamples. A detailed description of the AQ algorithm
and its implementation used for this study is provided by Cervone et al. (2010). The presented approach is not limited to AQ, and other
classifiers could be used to discriminate between the chemical samples. However, AQ provides a few crucial features that are well suited
for this study. Among those, the ability to work both with numerical and categorical values is important because of the nature of the obser-
vations. In addition, AQ generates rules that are easy to inspect and to validate, thus allowing to interpret the attribute value relationships of
the different chemicals. A neural network, for example, could be well suited to discriminate between the chemicals but is not very useful to
understand their relationships. Finally, AQ is well suited to work with data that are incomplete and contain noise through its pattern discov-
ery mode of operation, which was used in the current study.

3. REGION OF THE STUDY AND DATASET—BARRAXIUTTA AREA

Barraxiutta is located in southwestern Sardinia (Italy), and the area of interest spreads over the entire watershed of Domusnovas (Figure 2),
which extends 38.5 km2 and includes local rivers and small ponds. Its area is also involved in the Territorial Landscape Planning (Autonomous
Region of Sardinia), defined as “Bacino Metallifero 11” (Mines Basin 11) and named as “Marganai”. In the 1700s and 1800s, huge accumu-
lations of mineral waste were visible close to the old flotation area, and high concentrations of lead (around 10–14%) and silver (around 60%)
were persistent. The extraction of mineral continued until 1967 and stopped definitively 3 years later in 1970 because of the mine depletion.
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As a consequence of the previous mine activities, Barraxiutta is described and is identified by experts through the “Piano di
Caratterizzazione di Barraxiutta” (Progemisa-Geoparco, 2003), as an area of potential pollution. An area of potential pollution is a
specific site where residuals mineral materials are collected in high concentrations. These mineral materials are dispersed by means of wind
and rain, and cause widespread contamination of the soil, surface and underground waters. The pollutants are composed of wastes of differ-
ent sizes, such as agglomerates of residuals wrapped into silt, clay, and mixed by sand. Furthermore, the report demonstrates that the chemical
and physical alteration of the soil, vegetation, and waters are still increasing. An index has been calculated to quantify the contamination and it
reccomends high attention to human health and the ecosystem, further suggesting that restoration is a priority for this region.

In this study, the AQ algorithm was applied to analyze 303 soil samples and to generate patterns that characterize the relations between the
chemicals. In addition, the soil samples were collected from several places surrounding the mines. For each soil sample, the description is
reported, such as its elevation, the geographical location and name, watershed, land use type, contamination, lithology, description, deep,
and texture; in the laboratory, analysis on pH, loss on ignition, and other chemical components (Na2O, MgO, Al2O3, SiO2, P2O5, K2O,

Figure 2. Barraxiutta Basin, area of interest, and geographical location of the samples. This figure is available in colour online at wileyonlinelibrary.com/
journal/environmetrics
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CaO, TiO2, MnO, Fe2O3, As, Cd, Co, Cu, Hg, Ni, Pb, Sb, Th, V, Zn, C, and S)
1 are measured. Additionally, a series of groundwater samples

were collected, but not used for the analysis, from wells that were already available and from newly built wells. For each well, the piezomet-
ric level is determined, and pH, temperature, and conductibility are detected. In the laboratory, analysis on the ionic balance, salinity,
nitrogen, ammonium, sulfate ion, and 10 metallic elements are identified (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb, and Zn). The geographic
location of these samples is shown in Figure 2.

4. APPROACH: ALGORITHM QUASI-OPTIMAL SYMBOLIC MACHINE
LEARNING CLASSIFIER

The AQ was used to learn patterns associated with high levels of As (As> 100mg/kg) over the threshold determined by the law D. Lgs.
152/06 (Figure 3).

The goal is to identify the relationship between high As concentrations with respect to the amounts of other chemicals. The AQ discovered
five rules, visualized in Figure 3 in the form of an association graph, used to visualize attribution rules that characterize multivariate
dependencies between the target class and the input attributes. The target class (As> 100mg/kg) is associated only with unique patterns
of input parameters.

Each relationship is indicated with links between the input attributes and the target class. Several links are grouped together in individual
rules to show the conjunctions of the attribute value relationship associated with the target class. These conjunctions are indicated with arcs,
and each rule is shown with a rectangular node. The target class is associated with a disjunction of rules, indicating that it is enough that one
rule is satisfied for the target class to be implied.

The thickness of the links indicates the weight of a particular parameter value combination in the definition of the cluster. Each input
attribute, shown in its own ellipsis, is associated to a specific rule with a link. On each link, there is an annotation in the form of a relation
(=,≥,≤) and a value. Underneath the relation, there are two values in parentheses, which indicate the number of positive and negative events

1AL, aluminum; As, arsenic; C, carbonium; Cd, cadmium; Co, cobalt; Cu, copper; Fe, iron; Hg, mercurium; K, potassium; Mn, mangnese; Na, sodium; Ni, nickel; P,
phosphorus; Pb, lead; S, sulfur; Sb, Antimony; Th, thorium; Ti, titanium; V, vanadium; Zn, zinc.

Figure 3. Algorithm quasi-optimal learning output. This figure is available in colour online at wileyonlinelibrary.com/journal/environmetrics
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covered by the specific relation. Each rule, shown in a rectangle, is also annotated with the number of positive and negative events that it
covers; the line thickness linking rule and output attribute (As> 100) is a function of this coverage.

The rules show the relationship between the input attributes and the output attributes. In the dataset used in the study, there are 133
cases with As≥ 100, called the positive events and 170 cases with As< 100, called negative events. Rule 1 covers 79 positive events
and 8 negative events, thus establishing a strong pattern between the conjunction of the input attributes and the consequent, in this case,
As≥ 100. This rule is paramount for characterizing new unseen events, or events for which As has not been observed. If a new event is
observed with measurements that fall within the constraints set by the rules found, it is possible to immediately predict that the As
content will be above 100 the acceptability threshold and thus will represent an area with a substantial pollution risk. According to
the rules, As> 100 is related to P205 through a very complex relationship. For example, Rule 1 in the figure is the following:

As > 100 ← Fe203≤40:94;
C≤8:72;
P2O5 < 0:2302;

Ti02≤0:6226;
C0≤63:78;
Ca0≤42:38;
Th < 205:5;

S < 0:625;

Sb≥! 5;

V≤165:5; and
Mn0≥! 0:04995

To indicate that all these conditions must be held true for As> 100 to be found. This rule covers 79 positive and 0 negative examples
(positive examples are As> 100 and negative examples are As≤ 100). This rule covers only 79 of the 133 cases, and a combination of
all the rules, 1 through 5, is necessary to describe all the positive cases.

5. CONCLUSIONS

The soil mobility of the As depends on the type and quantity of colloids (Fe, Mn, Al, clay, and organic matter) in the soil, which determines
absorption. Also, pH, redox potential, and anion, and compete with As for the same area of adsorption (Sadiq et al., 1996). Substantially, the
As is found either in stable “inner-sphere complexes” with Fe, Mn, and aluminum oxides, or with clay minerals. Clay minerals especially
capture the As, on the basis of their potential absorption surface through the “inner-sphere” link, where the positive charge of the clay material
attracts the As and fixes to it. This is why Figure 3 shows a strong link with the oxides Fe, Al, and Mn, which specifically absorb heavy metals,
and their impact on the ecosystem is clarified and is well known (Cornell and Schwertmann, 1996).

In contrast, the link with phosphorus was not so predictable. The image clarifies and strengthens the concept that the phosphates
compete against the As to merge with the clay minerals in situ, and where phosphates are represented in the soil, As is released.
The behavior of the As ion is similar to that of phosphates because of the specific anion absorption in the soil moisture and the soil
components creating stable links on the surface of the clay minerals such as the “inner-sphere” already mentioned (Sun and Doner,
1996; Liu et al., 2001; O’Really et al., 2001). The mobility of As, then, is determined by the soil de-absorption caused by the high
concentration of phosphates (Woolson et al., 1973; Peryea, 1991; Violante and Pigna, 2002). Furthermore, phosphates determine an
increase of bioavailability and concentration of As in the soil for the root systems of the vegetation, as a consequence of the
competition between As and phosphates in the absorption site of the soil (De Santis, 2010). The AQ algorithm supports the hypothesis
that As is released into the environment when phosphate minerals are present, showing that the association–competition plays an
important role in the water–soil balance. It is important to remember that rules generated by any classifiers through inductive reasoning
could be incorrect. By nature, inductive reasoning is not truth preserving, such as deductive reasoning (e.g., Aristotelian syllogism—
modus ponens), therefore, it cannot be used to validate a hypothesis but only to provide support for it.

The consequence is that where phosphates are available, As is also available. Phosphates are likely absorbed by the clay surface, to the
detriment of As. Therefore, the symbolic machine learning analysis performed enhances the understanding of the “game of chemicals life”
and plays a key role in deducting and synthesizing the chemical behaviors. It also shows the connections among the chemical compounds
and determines the relevance of a certain compound over the others.

The present research illustrates an alternative way to investigate the cause–effect of pollutants in soil samples using a symbolic
machine learning classifier. The results, relative to the area of Barraxiutta in Sardinia, Italy, confirm the presence of strong patterns
between high levels of As and other chemicals, identified in the areas surrounding the disused mines. This methodology can be applied
to a wide range of similar studies.
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