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Abstract
Unlike deterministic forecasts, probabilistic predictions provide estimates of uncertainty, which is an ad-
ditional value for decision-making. Previous studies have proposed the analog ensemble (AnEn), which is a
technique to generate uncertainty information from a purely deterministic forecast. The objective of this study
is to improve the AnEn performance for wind power forecasts by developing static and dynamic weighting
strategies, which optimize the predictor combination with a brute-force continuous ranked probability score
(CRPS) minimization and a principal component analysis (PCA) of the predictors. Predictors are taken from
the high-resolution deterministic forecasts of the European Centre for Medium-Range Weather Forecasts
(ECMWF), including forecasts of wind at several heights, geopotential height, pressure, and temperature,
among others. The weighting strategies are compared at five wind farms in Europe and the U.S. situated in re-
gions with different terrain complexity, both on and offshore, and significantly improve the deterministic and
probabilistic AnEn forecast performance compared to the AnEn with 10-m wind speed and direction as pre-
dictors and compared to PCA-based approaches. The AnEn methodology also provides reliable estimation
of the forecast uncertainty. The optimized predictor combinations are strongly dependent on terrain com-
plexity, local wind regimes, and atmospheric stratification. Since the proposed predictor-weighting strategies
can accomplish both the selection of relevant predictors as well as finding their optimal weights, the AnEn
performance is improved by up to 20 % at on and offshore sites.

Keywords: energy meteorology, wind power forecasting, analog ensemble, uncertainty quantification, prob-
abilistic verification, predictor-weighting strategies

1 Introduction

Accurate wind power forecasts, which can be catego-
rized into deterministic and probabilistic, are important
for a safe and efficient operation of wind farms and a
cost-effective integration of wind generation into grids
(Pinson, 2013, and references therein). While determin-
istic forecasts are easy-to-understand and single-valued
for each forecast lead time and grid box, probabilistic
forecasts provide estimates of the forecast uncertainty.
Although forecast uncertainty might be reduced due to
improved forecast systems, it can never be eliminated
because of imperfect knowledge of the initial state of the
atmosphere and of some physical processes determining
its evolution, numerical approximations, and the atmo-
sphere chaotic nature (Lorenz, 1963). Thus, knowledge
of forecast uncertainty can lead to additional value for
decision-making (Hirschberg et al., 2011). In particu-
lar, the value of probabilistic wind power forecasts has
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been explored for trading wind generation on the en-
ergy market in several studies (Roulston et al., 2003;
Zugno et al., 2013; Alessandrini et al., 2014).

Analog-based methods have been successfully im-
plemented for probabilistic forecasts of precipitation,
850-hPa temperature, 2-m temperature, and 10-m wind
speed (Van den Dool, 1989; Hamill and Whitaker,
2006; Delle Monache et al., 2011; Panziera et al.,
2011; Delle Monache et al., 2013, among others). Re-
cently, the analog ensemble (AnEn) approach proposed
by Delle Monache et al. (2013) has been applied to
wind power forecasts (Alessandrini et al., 2015), re-
sulting in reliable quantification of the forecast uncer-
tainty. The AnEn is a mean to generate uncertainty
(i.e., probabilistic) information from a purely determin-
istic forecast, rather than being a calibration technique
of an existing ensemble, e.g., as proposed by Hamill
and Whitaker (2006).

A key aspect of the AnEn algorithm is the search
of analogs (past forecasts), which is based on a multi-
variate metric that estimates the degree of analogy be-
tween the current deterministic prediction and past fore-
casts from a historical data set. As Delle Monache
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Figure 1: Geographical location and terrain elevation [m] of a) the Colorado wind farm and b) the Abruzzo, Sicily, Horns Rev, and Baltic 1
wind farms. The position of the Colorado and Sicily wind farms is indicated by a rectangle for confidentiality reasons.

et al. (2013) put it, “including multiple predictor vari-
ables that exhibit correlations to the predictand further
helps distinguish the analogs by perhaps identifying
specific weather regimes.” However, Delle Monache
et al. (2013) and Alessandrini et al. (2015) do not opti-
mize the predictor selection and assign equal weights to
the predictors, neglecting relationships between individ-
ual predictors and the variable to be predicted, the pre-
dictand. For instance, Timbal et al. (2008) and Cavazos
and Hewitson (2005) have underlined the importance
of identifying these relationships for multiple, physi-
cally meaningful predictors in statistical downscaling
procedures.

Therefore, the main objective of this paper is to ex-
plore several predictor-weighting techniques with the
goal to further improve the AnEn performance for wind
power forecasting, by:

• Developing static and dynamic weighting strategies
where the optimized combination of multiple predic-
tor variables is found by minimizing a probabilistic
score over all possible combinations of weight val-
ues. Compared to the static strategy, the dynamic
strategy updates the optimized predictor weights
each month to explore their seasonal dependency.

• Identifying the AnEn predictors that are relevant for
probabilistic wind power forecasting. The weighting
strategies are applied to a range of analog predic-
tors including wind speed and direction at several
heights in the atmospheric boundary layer, geopoten-
tial height at 850 hPa, 925 hPa, and 500 hPa, mean
sea level pressure, 2-m temperature, and boundary
layer height.

• Applying the weighting strategies after a principal
component analysis (PCA) of the multiple predictor
data set. This approach has the advantage that redun-

dant information in the predictor data set are removed
and that the dimensionality of the predictor data set
is reduced.

We compare the weighting strategies at five wind
farms in Europe and the U.S. situated in regions with
different terrain complexity, both on and offshore, and
over a period of two years or longer, to study site-
dependent differences between the strategies. In Sec-
tion 2 we provide a description of the available wind
and power data at each wind farm and the determinis-
tic numerical weather predictions. Section 3 presents the
verification methods, while the AnEn method and the
proposed weighting techniques are introduced in Sec-
tion 4, and their performance is compared in Section 5.
The main findings of this study are discussed in Sec-
tion 6 and a conclusion is provided in Section 7.

2 Data

2.1 Wind farm observations

In this section, a description of the available data at
each wind farm is provided. The geographic locations
of the wind farms are shown in Figure 1. Because the
data are considered sensitive with respect to commercial
competition, we are unable to reveal specific locations of
some of the wind farms below. Nevertheless, a rigorous
evaluation of the weighting approaches is performed,
and full details of the error characteristics relative to the
measurements are shown in the reminder of this paper.

2.1.1 Offshore wind farms

The offshore wind farm EnBW Baltic 1, which started
operation in May 2011, is located 16 km north of the
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peninsula Darß-Zingst in the Baltic Sea. The wind farm
consists of 21 Siemens wind turbines with a hub height
of 67 m with a total installed capacity of 48.3 MW. Wind
power and nacelle wind speed observations are available
at each turbine of the wind farm with a resolution of
10 min for the 3-year period May 2011 to April 2014.

The wind farm Horns Rev is located in the North Sea
14 km west of Denmark and includes 80 turbines capa-
ble of producing 160 MW. The hub height of the tur-
bines is 80 m and observations are collected for 10-min
wind power and nacelle wind speed. They are available
for each turbine during the 2-year period from February
2010 to December 2011.

2.1.2 Onshore wind farms

The wind farm located in Colorado in the U.S. Great
Plains consists of several hundred of wind turbines. The
terrain in the direct vicinity of the wind farm is hilly.
Wind speed observations and wind power data at each
turbine are available with a time resolution of 15 min
for the 3-year period from February 2010 to December
2012.

The Sicily wind farm, which has been previously
studied in Alessandrini et al. (2013) and Alessan-
drini et al. (2015), is situated in Northern Sicily, Italy,
in a complex-terrain area. Heights in the area around the
wind farm range between 400 m and 1800 m. The wind
farm with a nominal power of 7.6 MW consists of nine
Vestas turbines with 50-m hub height. Available data are
wind power and wind speed observations at each turbine
and 50-m wind speed at one measurement mast in the
center of the wind farm. The data with a time resolu-
tion of 10 min are provided for the 2.5-year period from
November 2011 to March 2013.

The Abruzzo wind farm has a nominal power of
about 100 MW and is located in Central Italy in the
Abruzzo region. Heights in the complex-terrain area
around the wind farm range between 500 m and 1400 m.
The turbines with hub heights between 46 m and 50 m
are mainly situated on mountain ridges. Available data
are hourly averages of farm-wide wind power and wind
speed observations at four 10-m masts for the 2-year
period from February 2010 to December 2011.

2.1.3 Data handling

For each wind farm except Abruzzo, quality control of
the data is done by carefully comparing wind speed and
power observations at each turbine, which should follow
the typical shape of a turbine power curve. Apparent
outliers from this power curve are removed from the
data set, for example, data points of wind speed below
cut-in but positive power and wind speed above cut-in
and below cut-off but zero power. Curtailments, which
we define as constant power values below rated power
over several consecutive time steps but fluctuating wind
speed observations, are also removed. Additionally, the
datasets for Horns Rev and Baltic 1 are provided with

Table 1: List of the ECMWF IFS meteorological variables used in
this study.

ECMWF IFS variables

Long name Short name Unit

mean sea level pressure SLP Pa
2-m temperature 2-m T K
10-m wind direction 10-m WD °
10-m wind speed 10-m WS m/s
hub-height wind direction hub WD °
hub-height wind speed hub WS m/s
100-m wind direction 100-m WD °
100-m wind speed 100-m WS m/s
300-m wind direction 300-m WD °
300-m wind speed 300-m WS m/s
boundary layer height BLH m
925-hPa geopotential height 925-hPa GH m
850-hPa geopotential height 850-hPa GH m
500-hPa geopotential height 500-hPa GH m

turbine status signals and – in case of Horns Rev – also
with quality flags, which are used to further clean the
data.

The quality control filters approximately 10 % of the
power values at Baltic 1, 8 % at Horns Rev and Sicily,
and 3 % at Colorado. Finally, a normalized wind farm
time series is achieved by calculating the mean power
signal over all turbines in the wind farm, which have a
quality controlled and valid signal at each time step, and
by normalizing the time series with rated power of the
turbines. The 10-min and 15-min values are averaged to
hourly values to obtain the same time resolution of the
observation data at each wind farm.

For the Abruzzo wind farm, the available farm-wide
power time series do not allow to filter curtailment pe-
riods and down times at each turbine. There is no in-
formation available about the number of properly work-
ing turbines at each time step, and therefore the shut-
down of single turbines due to icing or curtailment is not
easily detectable. For this reason, the Abruzzo data are
particularly challenging since the generation of skillful
analogs depends on the quality of the power time series.
However, to remove obvious non-coherent observations,
the 10-m wind speed observations and aggregated power
values are compared against each other. This procedure
filters approximately 3 % of the power values.

2.2 Deterministic forecasts

The AnEn predictor data set is composed of the
high-resolution deterministic forecasts of the Integrated
Forecasting System (IFS) of the European Centre for
Medium-Range Weather Forecasts (ECMWF) and con-
siders 0000 UTC forecasts of meteorological variables
every three hours (Table 1). Note that wind speed and di-
rection at 10-m and 100-m height are diagnostic model
output of the ECMWF IFS and that hub-height and
300-m wind speed and direction are vertically interpo-
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Table 2: Terrain specification, training and test period at each wind farm.

Wind farm Terrain (Initial) training period Test period

Baltic 1 offshore 05/2011–04/2013 05/2013–04/2014
Horns Rev offshore 02/2010–12/2010 01/2011–12/2011
Colorado hilly terrain 02/2010–12/2011 01/2012–12/2012
Abruzzo complex terrain 02/2010–12/2010 01/2011–12/2011
Sicily complex terrain 11/2010–02/2012 03/2012–02/2013

lated from neighboring model levels making use of pres-
sure, temperature, and humidity profiles.

On the 26th January 2010, the horizontal resolu-
tion of the ECMWF deterministic forecast has been in-
creased to a spectral truncation at wave number 1279,
which corresponds to 0.125 ° × 0.125 ° (Miller et al.,
2010). Therefore, the horizontal resolution remains un-
changed for the training and test periods employed in
this study (Table 2). A horizontal bilinear interpolation
of the forecasts to the geographic coordinates of each
wind farm center is applied.

2.3 COSMO-DE analysis

To understand stability-dependent forecast errors at
Baltic 1, data from the consortium for small-scale mod-
eling (COSMO)-DE analysis are used. COSMO-DE is
a high-resolution, convection-permitting configuration
of the numerical weather prediction model COSMO
and the 2.8-km analysis is available across Germany
(Baldauf et al., 2011). Hourly potential temperatures
from the COSMO-DE analysis are used at the surface
and at model levels 47, 48, 49, and 50 to discuss the sta-
bility dependence of the forecast errors in Section 5.3.
The heights at full model levels of the COSMO-DE
analysis are 122.32 m (level 47), 73.03 m (level 48),
35.72 m (level 49), and 10 m (level 50) at Baltic 1.

3 Verification methods

To verify the probabilistic attributes of the ensemble
forecasts, the joint distribution of ensemble forecasts
and observations can be investigated (Murphy and
Winkler, 1987). In this section, approaches for the
evaluation of ensemble forecasts are introduced to fa-
cilitate the presentation of the results.

A reliability diagram includes the reliability curve
and the sharpness histogram. The former evaluates the
reliability (also called calibration) for an event thresh-
old. A reliability curve plots the observed relative fre-
quency of an event against the binned forecast probabil-
ity for any given level of probability. An ensemble fore-
cast is reliable if the reliability curve lies on the diago-
nal. Sharpness is an attribute of the forecast only, and is
displayed in the sharpness histogram (relative frequency
of use of each probability level).

The relative operating characteristics (ROC) diagram
is a discrimination-based display of forecast verification.
The ROC diagram does not evaluate the full joint dis-
tribution at an event threshold, but evaluates the abil-
ity of the ensemble forecast to discriminate between the
occurrence and non-occurrence of the event. The ROC
diagram is generated by plotting the false alarm rate
(i.e., false alarms divided by the total of non-occurrences
of the event) against the hit rate (i.e., the correct fore-
casts divided by total occurrences of the event). The
ROC discrimination can be summarized using the area A
under the ROC curve as a single scalar value, with A = 1
for a perfect forecast and A = 0.5 for the sample clima-
tology (Wilks, 2011). The ROC skill score (ROCSS) is
then defined as

ROCSS =
A − 0.5
1 − 0.5

= 2A − 1. (3.1)

The reliability and ROC diagram are both graphical dis-
plays of forecast verification for event thresholds. The
continuous ranked probability score (CRPS), however,
is computed across the entire variable range and can be
seen as the integral of the Brier score over all possible
threshold values (Hersbach, 2000). It is a proper scor-
ing rule for the evaluation of ensemble forecasts and can
be evaluated as

CRPS(Fens, y) =
1
M

M∑

m=1

|xm − y| − 1

2M2

M∑

n=1

M∑

m=1

|xn − xm|,

(3.2)
where Fens is the ensemble forecast with ensemble
members x1, . . . , xM ∈ R and y ∈ R is the observa-
tion (i.e., verifying wind power value) (Gneiting and
Raftery, 2007). Over N prediction/observation pairs,
the CRPS values are given by

CRPS =
1
N

N∑

n=1

CRPS(Fens,n, yn). (3.3)

To assess the statistical consistency of the ensem-
ble spread, the spread-skill relationship is analyzed by
comparing the root-mean-square error (RMSE) of the
ensemble mean to the square root of average ensemble
variance (S) (Wilks, 2011; Fortin et al., 2014, among
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others), which are defined as

RMSE =
( 1
N

N∑

n=1

|xn − yn|2
) 1

2 , (3.4)

S =

( 1
N

N∑

n=1

( 1
M − 1

M∑

m=1

(xm,n − xn)2
)) 1

2
, (3.5)

where x is the ensemble mean. Note that the correction
factor M/(M + 1), where M is the number of ensemble
members, has to be applied to the RMSE when com-
pared to S (Fortin et al., 2014). The interpretation of
the spread-skill relationship relies on the assumption of
a Gaussian distribution of ensemble mean errors and en-
semble members. Since this assumption might not be
met for wind power, the matching of spread and skill is
only a necessary condition for statistical consistency. To
provide an in-depth analysis of the spread-skill relation-
ship, the so-called binned-spread/skill diagram is cho-
sen, which compares S and RMSE over small class in-
tervals of spread (Van den Dool, 1989; Alessandrini
et al., 2015, among others).

To evaluate the deterministic skill of the ensem-
ble mean forecasts, the RMSE of the ensemble mean
is chosen (Eq. 3.4). To test the statistical significance
of the scoring rules (RMSE, CRPS, ROCSS) used in
this study, we calculate confidence intervals, generated
with the bootstrap resampling technique (Efron, 1979;
Bröcker and Smith, 2007; Pinson et al., 2010). We re-
peat the procedure 1,000 times and calculate 5 %–95 %
confidence intervals from the resulting bootstrap. The
consistency bars in the reliability curve are calculated
with a quantile function for a binomial distribution
(Bröcker and Smith, 2007; Pinson et al., 2010).

4 The analog ensemble (AnEn) method

4.1 Generalities

The AnEn method as proposed by Delle Monache
et al. (2013) is a technique to generate an uncertainty
forecast from a purely deterministic prediction. The un-
certainty information is estimated using a set of M
past verifying observations (i.e., wind power) that cor-
respond to the M past forecasts (analogs), which are
most similar to a current deterministic forecast. Since
this approach directly uses the verifying observations as
ensemble members, the AnEn method automatically ac-
counts for observational errors in the verification. The
multivariate metric used to estimate the degree of anal-
ogy between the current deterministic forecast and past
predictions from a historical data set is defined in terms
of a cost function (Delle Monache et al., 2011; Delle
Monache et al., 2013):

‖ Ft, At′ ‖=
Nv∑

i=1

wi

σi

( t̃∑

j=−t̃

(
Fi,t+ j − Ai,t′+ j

)2)
1
2
. (4.1)

Ft is the current deterministic forecast valid at future
time t and At′ an analog forecast with the same forecast
lead time but valid at a time t′ before Ft was issued;
t̃ corresponds to half the number of additional forecast
lead times around the future time t over which the metric
is computed; Fi,t+ j, Ai,t′+ j are the values of the current
and past forecast, respectively, of the meteorological
predictor i within the time window. The consideration
of a time window is important since the metric accounts
for the similarity of a temporal trend between a past and
current deterministic forecast at a specific location. The
Nv is the number of meteorological predictors used in
the analog search and wi the weight assigned to each
predictor. Each meteorological predictor is normalized
with its standard deviation σi over the training period of
past forecasts to include predictors with different units.
Circular meteorological variables such as wind direction
are treated with circular statistics (Jammalamadaka
and Sengupta, 2001).

4.2 Predictor-weighting strategies

Previous studies on AnEn do not optimize the predic-
tor selection and assign equal weights wi = 100 %
to each variable (Delle Monache et al., 2011; Delle
Monache et al., 2013; Alessandrini et al., 2015; Van-
vyve et al., 2015). Alessandrini et al. (2015) use wind
speed and wind direction at 10-m model height as pre-
dictors for generating AnEn for wind power. By as-
signing wi = 100 %, however, these studies neglect the
strength of the relationships between individual predic-
tors and the variable to be predicted. Furthermore, there
might be more potential predictors for wind power pre-
dictability in terms of the AnEn method. For this rea-
son, static and dynamic predictor-weighting strategies
are proposed here to find optimized predictor weights
wi for a range of predictors. The usage of several and in-
dependent predictors as input to the predictor-weighting
strategies is desirable to capture different sources of
wind power predictability.

4.2.1 CRPS minimization

The static and dynamic weighting strategies have in
common that the optimal predictor weights are found
by minimizing the wind power CRPS over all possible
combinations. To limit the number of possible combina-
tions, the predictor weights wi are restricted by

Nv∑

i=1

wi = 100 % and wi ∈ {0, 10, . . . , 100}%. (4.2)

The reason for the latter restriction is that a finer granu-
larity of wi substantially increases the number of pos-
sible combinations and therefore computational costs.
Just adding wi = 5 % as another possible weight for
Nv = 14 increases the number of combinations by an
order of magnitude.

Note that we implement the minimization as a brute
force, given that each weight combination is tested by
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computing the resulting performance in terms of the
CRPS. This expensive calculation can be performed off-
line, and it allows to do a thorough exploration to find
the optimal predictor weights that maximize AnEn per-
formance with respect to CRPS over the training period.
The possibility of carrying out the minimization with
numerical optimization algorithms is discussed in Sec-
tion 6.

4.2.2 Static weighting

The static predictor-weighting strategy optimizes the
predictor combination by minimizing the wind power
CRPS of AnEn over the entire training period of say
12–24 months. Thus, the optimization period and the
training period for searching the analog dates are iden-
tical. For a given day of the training period, the analogs
are searched over the entire training period excluding
that particular day. The best combination is then applied
to the test period that does not overlap with the train-
ing. Since the optimized predictor combination might
be lead-time dependent, the following variants of the
static-weighting strategy are considered: A lead-time in-
dependent strategy, where the CRPS is minimized over
all forecast lead times together, and a lead-time depen-
dent strategy, where the CRPS is minimized either for
each lead time separately or for each time of the day.
The latter groups forecast lead times that correspond to
the same time of the day, e.g. lead times 3 h, 27 h, and
51 h of a 0000 UTC forecast correspond to 0300 UTC
and are grouped together. Minimizing the CRPS for all
lead times together has the advantage of a larger sam-
ple size available for the optimization procedure com-
pared to optimizing the predictor combination for each
lead time separately. The time-of-the-day dependent op-
timization might be a good compromise solution as the
sample size increases when the lead times are grouped,
while a possible daily cycle of predictor combinations is
taken into account.

4.2.3 Dynamic weighting

Compared to the static strategy, the dynamic predictor-
weighting approach updates the optimized predictor
combination to explore the dependency of the weights
on the season. The predictor combination is updated
each month by optimizing the CRPS of the wind power
AnEn only over the k-months (later called optimization
period) that precede the 1-month test period. The analog
dates are still searched over the entire training period,
which is only initially the same compared to the static-
weighting strategy. However, the CRPS minimization is
done only for the optimization period. Lead-time depen-
dent and independent variants of the dynamic predictor-
weighting strategy are also considered.

4.2.4 Principal component weighting

The static and dynamic strategies optimize the weights
for multiple predictors. These predictors are determinis-
tic forecasts of meteorological variables from numerical

weather predictions. If there is redundant information in
the data set due to correlations among the predictor vari-
ables, principal component analysis (PCA) can be an ap-
propriate statistical tool to reduce the dimensionality of
the original predictor data set to fewer variables, which
are linear combinations of the original ones (Jolliffe,
2005; Wilks, 2011, among others).

We apply PCA to the standardized predictor data set,
which means that the mean of each predictor time series
is subtracted and that the time series is divided by their
respective standard deviation. Furthermore, wind speed
and wind components are used instead of wind speed
and wind direction predictors as input to the PCA. The
new predictors or principal components are obtained by
projecting the original predictors on each eigenvector.

To reduce the dimensionality of the original data set,
the principal components need to be truncated. One sub-
jective approach is based on the eigenvalue spectrum,
which is the eigenvalue magnitude as a function of the
principal component number (Wilks, 2011). The eigen-
value number where a slope separation of the spectrum
occurs, is taken as the principal-component cutoff.

4.3 Implementation specifics

Alessandrini et al. (2015) carried out a sensitivity
study of AnEn to different parameters in Eq. 4.1 at
the Sicily wind farm. The best AnEn performance was
achieved for t̃ = 1 and an ensemble consisting of M =
20 members. The same configuration is selected here
since it also yields the best AnEn performance in terms
of the CRPS with the data set analyzed in this study (not
shown). Note that t̃ = 1 in this study corresponds to a
time window of six hours since ECMWF 3-hourly fore-
casts are used, which means that similar temporal trends
of the predictors over six hours are matched and not just
the predictor values at one lead time.

5 Results

In Section 5.1 the selected predictors from each pre-
dictor-weighting strategy based on the optimization over
the training period are presented, while in Sections 5.2
and 5.3 the performance of the 20-member AnEn asso-
ciated with the different weightings is evaluated over the
test period.

5.1 Optimized predictor weights

The predictor-weighting strategies are applied to the
Nv = 14 predictors from the high-resolution ECMWF
deterministic forecast (Table 1). Considering the weight
restriction (Eq. 4.2), 14 predictors lead to 1,144,066
possible combinations for which the AnEn-based wind
power predictions are generated.
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Figure 2: CRPS of normalized wind power [%] as a function of the forecast lead time [h] at Baltic 1, Horns Rev, Abruzzo, Sicily, and
Colorado. The gray and blue lines indicate the CRPS of the 1,144,066 possible predictor combinations, the red lines the 5000 best predictor
combinations, and the black line the best predictor combination of the lead-time independent static-weighting strategy. While the blue-
colored lines show the CRPS of AnEn excluding wind speed at all heights as predictors, the gray lines show the CPRS of AnEn including
wind speed predictors at all heights with at least 10 %. The green line additionally shows the CPRS of the AnEn based on all 14 predictors
given the same weight (i.e., non-weighted). Each predictor combination is evaluated over the entire training period.

5.1.1 Static weighting

The results of the lead-time independent static predictor-
weighting strategy (later called static weighting) are
shown in Figure 2. As indicated by the 1,144,066 lines,
the normalized wind power CRPS covers a wide range
(i.e., 5–22 %) at Baltic 1 and Horns Rev, which empha-
sizes the need for optimizing the predictor combination.
The solutions at those offshore wind farms are divided
into two main regimes. The regime with the highest
CRPS (blue-colored) occurs when wind speed predic-
tors are excluded. Once the sum of the wind speed pre-
dictors (10 m, hub height, 100 m, and 300 m) is equal to
10 % or higher, the CRPS falls to lower values. Includ-

ing wind speed as a predictor is therefore crucial for in-
creasing the AnEn forecast performance. The clear sep-
aration of the AnEn solutions is not evident at Abruzzo,
Sicily, and Colorado since probabilistic wind power pre-
dictability might be less dominated by wind speed pre-
dictors at these onshore sites.

As expected the best predictor combination is dom-
inated by wind speed predictors at all sites (see top of
each panel in Figure 2). Wind speed predictors in the
proximity of the turbine swept area (10 m, hub height,
100 m) are selected at offshore wind farms. However,
the wind power CRPS is barely degraded when the hub-
height wind speed predictor is exchanged by 300-m
wind speed since the correlation between wind fore-
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Figure 3: Contours of pairwise marginal densities between each couple of the following variables: wind speed (hub height, 300 m), wind
direction (hub height, 300 m), 2-m temperature, and 500-hPa geopotential height (for intraday and day-ahead forecasts of the ECMWF
IFS) as well as wind power (measured). The data are shown for Sicily (lower left plots, time period November 2010 to March 2012) and
for Baltic 1 (upper right plots, time period November 2011 to March 2013). Red colors indicate high densities and yellow colors lower
densities.

casts at both heights is high at the offshore sites (see
marginal density plots for Baltic 1 in Figure 3). At the
complex-terrain wind farms in Abruzzo and Sicily, pre-
dictors at 300 m dominate the static weights (Figure 2).
Since 300-m wind speed forecasts resolve low and high
wind power events by a larger wind speed range (see
marginal density plots for Sicily in Figure 3), the met-
ric can better distinguish the analog quality using 300-m
wind speed forecasts.

In the best predictor combinations, wind direction is
assigned 10–30 % weight. Wind direction might be im-
portant if observed wind power variability is strongly
connected to certain wind direction regimes. The den-
sity plots at Sicily indicate that high wind power events
occur for southerly and northerly wind direction fore-
casts (Figure 3), which could explain the assignment of
30 % weight to 300-m wind direction forecasts at this
complex-terrain site. Other predictors such as geopoten-
tial height at 500 hPa are of less importance for wind

power predictability, but still receive 10 % weight at
Horns Rev and the onshore wind farms.

5.1.2 Dynamic weighting

Compared to the static strategy, the dynamic predictor-
weighting approach updates the predictor combination
each month and optimizes over a k-month optimization
period instead of the entire training period. We tested the
sensitivity of the dynamic strategy to the length of the
k-month optimization period with k ∈ {1, 2, 3, 4}.
Overall the lowest forecast errors are achieved with a
3-month optimization period (not shown) for which rea-
son the dynamic weighting is presented with k = 3.
Figure 4 illustrates the weights of the dynamic predictor-
weighting strategy with 3-month optimization periods
and with the lead-time independent approach (later
called dynamic weighting).

For certain months, the predictor combinations dif-
fer substantially from the predictor combination of the
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Figure 4: Optimized predictor combinations for the dynamic predictor-weighting strategy with sliding 3-month optimization periods and
the lead-time independent approach. The optimized predictor combinations of the static strategy are shown for comparison. The higher
the weight of a predictor, the larger the filled circle. The date on the abscissa indicates the month for which the optimization is carried
out, for instance 05/2013 gives the information that the 3-month optimization period is 02/2013–04/2013 and that the optimized predictor
combination is applied to 05/2013.

static strategy. For instance, at the Abruzzo wind farm,
2-m temperature is assigned up to 60 % weight in the
first half of 2011, while assigned 0 % for the static-
weighting strategy. Other examples are the dominance
of the 300-m wind speed predictor in the beginning
of 2012 or the 300-m wind direction predictor from
September to November 2012 at the Colorado wind
farm. We will evaluate in Section 5.2 and 5.3 how those
and other differences between the static and dynamic
predictor-weighting strategy impact the AnEn perfor-
mance over the test period.

5.1.3 Principal component (PC) weighting

The weighting strategies are applied to principal com-
ponents, given that the marginal density plots in Fig-
ure 3 indicate high correlations between certain pre-
dictors such as wind speed at hub height and 300 m.
Since the PC cutoff occurs at PC number six as indi-

cated by the eigenvalue spectrum (Figure 5), the PC
static-weighting strategy is based on six PCs. The to-
tal variance explained by the leading six PCs is be-
tween 97–99 %, indicating that there is not an excessive
information loss when truncating. Computational costs
of the weighting optimization procedure are consider-
ably lower when the number of predictors is reduced
from Nv = 14 to Nv = 6 since the number of possi-
ble predictor combinations is decreased from 1,144,066
to 3,003. To optimize the static-weighting AnEn over
1,144,066 combinations at Horns Rev, our Fortran code
runs about 55 hours on 12 cores (Intel Westmere-EP)
with each 2.66 GHz. In comparison, the optimization
over 3,003 combinations just requires about 0.16 hours.
Note that the Fortran code used in this study is not op-
timized for performance, and the above computational
costs could be significantly reduced with it. An alterna-
tive PC-weighting approach to brute-force could be to
set the PC weight proportional to the variance explained
by each component (not shown).
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Figure 5: Eigenvalue magnitudes as a function of the principal
component number (eigenvalue spectrum) for an 18-dimensional
principal component analysis at all wind farm sites. The principal
component number six, where a slope separation of the spectrum
occurs, is taken as the principal component cutoff.

Table 3: Optimized weights [%] for the (lead-time independent)
static predictor-weighting strategy based on six leading principal
components at each wind farm.

PC1 PC2 PC3 PC4 PC5 PC6

Baltic 1 50 10 10 20 0 10
Horns Rev 50 10 0 30 0 10
Abruzzo 40 30 10 0 10 10
Colorado 40 10 20 10 10 10
Sicily 20 40 20 10 0 10

The weights for each PC are optimized by apply-
ing the lead-time independent static-weighting strategy
to the PC predictors (later called PC static weighting).
The weights in Table 3 indicate that the leading PC
is assigned 40–50 % weights at Baltic 1, Horns Rev,
Abruzzo, and Colorado, but 20 % weight at Sicily where
the second PC is assigned the largest weight. The lat-
ter can be explained by the second eigenvector that pri-
marily points in the direction of meridional wind and
in the direction of wind speed at all four heights (not
shown). Thus, the variance explained by the meridional
wind and wind speed is most important for wind power
predictability at Sicily, which confirms the previous dis-
cussion on the importance of the wind direction predic-
tor at that location.

5.1.4 Predictor importance

The previous analysis of the best predictor combination
at each site led to a first insight into the importance of
each predictor. However, many other predictor combi-
nations have similar CRPS values compared to the best
predictor combination (Figure 2, red lines). Thus, to re-
fine the previous analysis and to rank the predictors ac-
cording to their importance, predictor combinations with
slightly higher CRPS values should be considered as
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Figure 6: Importance Q [%] of each predictor for the static-
weighting strategy at all wind farm sites plotted on a logarithmic
y-axis. The horizontal dashed line indicates the 5 % value of Q.

well. This can be achieved by defining the importance
Qi of each predictor i:

Qi =

∑K
k=1 wike−αk[1 − Ck−CB

CW−CB
]

∑K
k=1 e−αk[1 − Ck−CB

CW−CB
]

=

∑K
k=1 wike−αk(CW −Ck)
∑K

k=1 e−αk(CW −Ck)
,

(5.1)

where CB is the CRPS of the best predictor combi-
nation, CW the CRPS of the worst predictor combina-
tion, Ck the CRPS of the k-th possible combination, and∑Nv

i=1 Qi = 1. The weight wik is the weight of each predic-
tor i for the given combination k. To emphasize predictor
combinations with low CRPS values, we add the decay
function e−αk with an exponential decay constant α. To
achieve an e-folding after the 5000 best predictor combi-
nations, which are highlighted in Figure 2 for the static-
weighting strategy, we set α = 2·10−4 (i.e., 1/α = 5000).

The importance values of each predictor are shown in
Figure 6. At all wind farms except Colorado, predictors
such as temperature, pressure, boundary layer height,
and geopotential height at different pressure levels have
low importance values (below 5 %), while wind speed
and direction predictors have considerably higher im-
portance depending on the wind farm site. At Colorado,
however, upper-level geopotential height at 500-hPa
reaches an importance value of ∼ 10 %. At the offshore
wind farms, wind speed predictors are important at sev-
eral heights. The 300-m wind speed predictor has clearly
the highest importance (∼ 40 %) at the Abruzzo wind
farm. At Horns Rev, wind direction predictors are of low
importance, while 100-m and 300-m wind direction pre-
dictors receive importance values clearly above 5 % at
the remaining wind farms. At Sicily, wind direction at
300-m is of highest importance, which is in line with the
analysis of the best predictor combination.
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Figure 7: RMSE [%] of the ensemble mean of wind power normalized with either the installed capacity (left ordinate) or the mean generation
(right ordinate) as a function of the forecast horizon for the test period at each site. Different weighting strategies have been applied (see
legend box). The same plot but calculated for all forecast lead times is shown to the right of each figure. The 95 % bootstrap confidence
intervals are indicated by the errors bars.

5.2 Verification of the ensemble mean

The 20-member AnEn with different weighting strate-
gies are first compared in terms of the RMSE over the
test period to evaluate the deterministic skill of the en-
semble mean. The RMSE is normalized with both the
installed capacity and the mean generation at each wind
farm over the test period (see left and right ordinates in
Figure 7). The comparison of static and dynamic weight-
ing is carried out against the AnEn generated with 50 %
weight on both wind speed and direction (WS+D) at
10-m height (later called 10-m WS+D). The latter pre-
dictor combination was applied in Alessandrini et al.
(2015), which is the only study where the AnEn formu-
lation adopted here has been tested for wind power pre-
dictions, and as such is used as a baseline performance.

The RMSE normalization with mean generation al-
lows a comparison of forecast errors between wind
farms. The intraday (3–21 h) and day-ahead (24–45 h)
RMSE is between 25–40 % at offshore sites and
55–100 % at onshore sites (Figure 7). The RMSE is
considerably higher for the onshore sites where diur-
nal and terrain effects reduce wind power predictability
when compared to offshore sites. This is underlined by

the pronounced diurnal cycle of the RMSE at Abruzzo,
Sicily, and Colorado.

In addition to the lead-time dependent RMSE, the
RMSE is calculated for all forecast lead times together
with 90 % bootstrap confidence intervals to test the sta-
tistical significance of differences between the weight-
ing strategies (Figure 7). The RMSE values of the static
and dynamic weighting AnEn are significantly lower
than the RMSE of the 10-m WS+D AnEn at all wind
farms considered in this study. The confidence intervals
indicate that the PC static-weighting has an overall sim-
ilar RMSE compared to the 10-m WS+D and a higher
RMSE than the static and dynamic weighting based on
the original ECMWF predictors. We also applied the
dynamic-weighting strategy to the PCs as well as an
equal weighting of each PC to generate the AnEn. Both
strategies yield higher RMSE values than the presented
PC static-weighting strategy (not shown).

At offshore wind farms, the static and dynamic
weighting update strategies improve over the 10-m
WS+D weighting for all lead times, while improve-
ments are strongly lead-time dependent at Abruzzo.
Largest improvements occur during evening and night-
time hours, while there are almost no improvements dur-



12 C. Junk et al.: Probabilistic wind power forecasting with an analog ensemble Meteorol. Z., PrePub Article, 2014

ing noon and afternoon, which may suggest that near-
surface wind predictors exhibit a similar wind power
predictability as the 300-m predictor during situations
where the atmospheric boundary layer is well-mixed at
this complex-terrain site.

Note that we present the weighting strategies with
a lead-time independent approach, i.e., the predictor
combination is optimized for all forecast lead times
together. Although an optimization for each lead time
separately or time of the day appears reasonable, the
lead-time dependent strategy yields similar or higher
forecast errors for both deterministic and probabilistic
scores over the test period (not shown). This might be
explained by the reduced sample size available for the
optimization procedure, which decreases the robustness
of the weighting strategy.

Furthermore, the forecast verification in this study is
done over the test period, which does not overlap with
the training period. This aims to simulate a real-time sit-
uation, when the observations are not available for the
period covered by the forecast. It is also interesting to
derive the optimized predictor combination over the test
period to detect the highest possible AnEn performance.
For the static weighting AnEn, the approach with identi-
cal training and test periods slightly outperforms the ap-
proach with independent training and test periods (not
shown). Since improvements are statistically not signifi-
cant, the real-time optimization is effective in approach-
ing the best achievable weight configuration.

5.3 Probabilistic Verification

5.3.1 CRPS

Figure 8 shows the relative improvement of the CRPS of
the static and dynamic weighting AnEn over the 10-m
WS+D AnEn. The improvements are statistically signif-
icant at all wind farms and up to 20 % for intraday fore-
cast horizons at offshore sites, but gradually decrease
towards larger forecast horizons. At the Abruzzo wind
farm, improvements in the CRPS have a strong diurnal
cycle similar to the ensemble mean RMSE.

The static and dynamic weighting are again superior
to the PC static weighting at all wind farms. An analysis
of first and second eigenvectors at each site indicates that
the eigenvectors point in the direction of wind speed and
wind components at all heights at the same time. The
forecast skill at Abruzzo, however, emphasizes the par-
ticular importance of the 300-m wind speed predictor.
The PCA removes the ability to differentiate between
predictors from certain heights that could explain the
lower forecast skill of the PC static weighting and that
would justify the computationally expensive brute-force
approach based on the original ECMWF predictors.

The static and dynamic weighting have overall the
same forecast skill. At the Colorado wind farm, how-
ever, the dynamic-weighting strategy is superior to the

static-weighting strategy at certain lead times. As evi-
dent from Figure 4, the dynamic-weighting strategy puts
more emphasis on the 300-m wind predictors for cer-
tain months that might be advantageous in terms of wind
power predictability. However, differences between both
weighting strategies are statistically not significant as in-
dicated by the confidence intervals.

The similarity of the skill of the static and dy-
namic weighting AnEn raises the question if the selec-
tion of appropriate predictors is most important, while
the weights applied to each predictor are less impor-
tant. To answer this quesion, we generate an analog
ensemble based on the predictors (that have at least
10 % weight) found with the static-weighting strategy at
each site, but instead of applying the optimized weights
the same weight is given to each predictor (i.e., non-
weighted). We refer to this approach as static predic-
tors (non-weighted). This approach performs worse than
the static-weighting strategy at all sites (Figure 8), with
particularly low skill at Horns Rev. The latter might
be explained by considerably increasing the weight of
the 500-hPa geopotential height predictor in the non-
weighted approach compared to the 10 % weight in
static-weighting approach.

To analyze how much further the AnEn performance
decreases when all available predictors are equally
weighted, we generate a 14-predictors (non-weighted)
AnEn. Its performance, which is shown in Figure 2
for the training period and in Figure 8 for the test pe-
riod, is lower than the static-predictors (non-weighted)
AnEn at all wind farm sites. Thus, the comparison
of 14-predictors (non-weighted) AnEn, static-predictors
(non-weighted) AnEn and static-weighting AnEn em-
phasizes that both the selection of relevant predictors
and the predictor weighting are important to improve
AnEn skill.

Although the overall forecast skill of the static and
dynamic weighting AnEn are similar, we want to ana-
lyze existing differences to highlight the potential of the
dynamic-weighting strategy in terms of wind power pre-
dictability. Figure 9 shows the CRPS for each month, but
for intraday and day-ahead lead times together, which
are most important in terms of wind power trading on
the energy market. At Baltic 1, forecast improvements
with the static and dynamic weighting strategies are
3–4 % in January 2014 and 20–21 % in February 2014.
An analysis of the potential temperature profiles pro-
vides an explanation (Figure 10). While potential tem-
perature differences between the surface and upper
model levels of the COSMO-DE analysis are on aver-
age negative in January 2014, they are clearly positive in
February 2014, which implies stable stratification. Since
stably-stratified atmospheric boundary layers are char-
acterized by reduced vertical transport, the 10-m near-
surface wind predictors are decoupled from hub-height
winds, and therefore less relevant for the predictability
of wind power during stable stratification.

At the Abruzzo wind farm, the dynamic-weighting
strategy puts considerable weight to the 2-m predictor
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Figure 8: Improvement in the CRPS [%] as a function of the forecast horizon for the test period at each site for different weighting strategies
with respect to the use of 10-m wind speed and direction as predictors. The same plot but calculated over all forecast lead times is shown to
the right of each figure. The 90 % bootstrap confidence intervals are indicated by the errors bars.
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Figure 9: As in Figure 8, but as a function of time at Baltic 1 (left) and Abruzzo (right) and for intraday and day-ahead lead times grouped
together.

early in 2011 (Figure 4). This appears to have a positive
effect on forecast skill compared to the static-weighting
strategy in January and February 2011 (Figure 9). In
March and April 2011, the static weighting AnEn has
a higher forecast skill. During this period, the dynamic-
weighting AnEn puts 20 % weights to sea level pressure
and 500-hPa geopotential height, which leads to lower
performance.

5.3.2 Binned-spread/skill diagrams

To evaluate the statistical consistency of the ensemble
spread, Figure 11 shows binned-spread/skill diagrams.

If the binned-spread/skill diagram is on the 1:1 diagonal,
the binned spread matches the RMSE, which is a neces-
sary condition for statistical consistency. The analysis of
the binned-spread skill diagrams of Horns Rev, Baltic 1,
and Colorado as well as of Sicily and Abruzzo lead to
very similar conclusions. Thus, for brevity reasons we
select Baltic 1 and Sicily as representative sites. For sim-
ilar reasons, we only show the reliability and ROC dia-
grams of Baltic 1 and Sicily. Furthermore, intraday and
day-ahead forecast horizons are jointly considered.

The static and dynamic weighting AnEn and the
10-m WS+D AnEn exhibit a good statistical con-
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Figure 10: Hourly potential temperature differences [K] between model levels (47, 48, 49, 50) and the surface of COSMO-DE at the wind
farm Baltic 1 for January 2014 (left) and February 2014 (right). The dashed line indicates the mean potential temperature difference between
level 48 and the surface.
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Figure 11: Binned ensemble spread [%] versus RMSE of the ensemble mean [%] of normalized wind power for intraday and day-ahead
forecasts at Baltic 1 (left) and Sicily (right).

sistency particularly for mean spread values between
10–20 % since the spread-skill curve is close to the 1:1
diagonal. For the high-spread class, however, the AnEn’s
of all weighting-strategies are overdispersive. A closer
analysis indicates that high wind power spread and rel-
atively low RMSE (i.e., overdispersion) in this high-
spread class mainly occurs for observed wind power
events in the steep part of the power curve. In this part
of the power curve, slight deviations from the observed
weather regime in the analog selection process can eas-
ily lead to an overestimate of the variance of the 20 en-
semble members.

At Baltic 1, the spread-skill relationship of the low-
spread class indicates an underdispersive static and dy-
namic weighting AnEn and 10-m WS+D AnEn. This sit-
uation mainly occurs if all ensemble members predict ei-
ther zero wind power or rated wind power while the ob-
servation slightly differs from that. Although the spread
of the PC static weighting AnEn is statistically consis-

tent for the low-spread class at Baltic 1, it is character-
ized by a stronger overdispersion for the other classes.

The binned-spread/skill diagrams of the static and
dynamic weighting AnEn are both shifted towards lower
RMSE and spread values compared to the PC static
weighting AnEn and 10-m WS+D AnEn. This implies
lower forecast errors of the static and dynamic weighting
AnEn but still statistical consistency since the spread is
reduced at the same time. Thus, a shift of the binned-
spread/skill diagram towards the lower left is preferable.

5.3.3 Reliability and ROC diagrams

To assess reliability, sharpness, and discrimination, we
assess the different weighting strategies in terms of the
reliability and ROC diagram for certain event thresh-
olds (Figures 12–13). The 50th and 90th percentile of
observed wind power over the test period is chosen as
event thresholds.
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Figure 12: Reliability diagram and sharpness histogram for intraday and day-ahead forecasts at Baltic 1 (left) and Sicily (right). Results
are shown for events larger than the 50th percentile (top row) and 90th percentile (bottom row) of observed wind power. The sharpness
histogram displays the relative frequency of events in each forecast probability bin. The vertical bars of the static-weighting AnEn represent
90 % consistency bars that have been calculated with a quantile function for a binomial distribution.

The reliability curve and sharpness histogram of the
static and dynamic weighting indicate a similar reliabil-
ity and sharpness at both thresholds and both sites (Fig-
ure 12). At Baltic 1, the static and dynamic weighting
AnEn of the 50th percentile threshold are more reliable
for forecast probabilities > 0.5 compared to the 10-m
WS+D and particularly the PC static weighting. Further-
more, the sharpness of the static and dynamic weight-
ing AnEn is higher since the lowest and highest forecast
probabilities are more populated. The higher sharpness
at the 50th percentile threshold is in agreement with the
previous finding that the binned-spread/skill diagrams of
the static and dynamic weighting AnEn are shifted to-
wards lower spread values.

The PC static weighting AnEn appears to be the least
reliable with a tendency to underconfidence for high
forecast probabilities. This is particularly clear for the
high threshold at Sicily. The sharpness of the AnEn’s
at the 90th percentile threshold is fairly similar for all

weighting strategies although there is a tendency of
sharper static and dynamic weighting AnEn’s.

The ROC diagram and ROC skill score (ROCSS)
evaluate the ability of the AnEn to discriminate between
the occurrence and non-occurrence of an event (Fig-
ure 13). The higher the ROCSS is, the better its discrim-
ination ability. We also provide the 90 % confidence in-
tervals of the ROCSS to evaluate the statistical signif-
icance of differences between the predictor-weighting
approaches.

The ROCSS of the static and dynamic weighting
AnEn are higher compared to the 10-m WS+D and PC
static weighting AnEn at all sites and for both thresh-
olds. However, the confidence intervals indicate that the
differences are statistically not significant except for the
90th percentile threshold at Baltic 1 where the curva-
ture of the static and dynamic weighting ROC curve is
clearly higher.
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Figure 13: ROC diagram for intraday and day-ahead forecasts at Baltic 1 (left) and Sicily (right). Results are shown for events larger than
the 50th percentile (top row) and 90th percentile (bottom row) of observed wind power over the test period. The area under the ROC curve
relative to a climatological forecast is the ROC skill score (ROCSS). The confidence range of the ROCSS are 90 % bootstrap intervals.

6 Discussion

In the previous section, we have shown that the static
and dynamic predictor-weighting strategies increase the
AnEn performance over the 10-m WS+D AnEn signif-
icantly. The optimized predictor combination strongly
depends on influencing factors such as terrain complex-
ity and atmospheric stratification. Assuming that trans-
mission system operators or wind power traders re-
quire ensemble forecasts for several wind farms within
a portfolio, attention should thus be turned to optimize
the predictor combination in case the analog ensem-
ble method is applied. The strong dependence of im-
provements on for example the terrain complexity also
justifies optimizing the predictor combinations with the
brute-force approach at each wind farm. Future studies,
however, could develop optimization procedures based
on numerical optimization algorithms, which may be ap-
propriate for optimizing the predictor combination of

the analog ensemble, but are more efficient than the
brute-force approach. The CRPS minimization with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
as proposed for the ensemble model output statistics
by Gneiting et al. (2005) could serve as a basis. Some
preliminary work on CRPS minimization based on the
BFGS algorithm indicated that the shape of the surface
on which the minimum is searched, is characterized by
very low gradients and several local minima, which are
different from the absolute minimum found with the
brute force.

To decrease the computational costs of the brute-
force CRPS minimization by reducing the dimension
of the multivariate predictor data set, we applied the
weighting strategies to the leading principal components
instead of the original predictor data set. The AnEn per-
formance significantly decreased with this approach at
all wind farms. One reason might be that PCA trans-
forms the dataset into a new variable space spanned by
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leading eigenvectors, which removes the important abil-
ity to differentiate between predictors for example from
certain heights. An alternative approach, which reduces
the dimension of the dataset, but avoids data transfor-
mation, might be to find a predictor subset from all
possible subsets based on the Bayesian information cri-
terium (Schwarz, 1978) with forward selection, back-
ward elimination, or stepwise selection. However, PCA
could be an appropriate statistical tool for regional wind
power forecasting with the analog ensemble. In that con-
text, PCA was recently applied to large-scale sea level
pressure fields from reanalyses with a coarse horizon-
tal resolution of 2.5 ° × 2.5 ° to estimate regional wind
power output with an analog ensemble (Martín et al.,
2014).

As shown in the previous Section, the dynamic-
weighting strategy does not outperform the static strat-
egy although it is designed to continuously adapt the
predictor combination to seasonal changes. One ex-
planation might be the statistical variability, which in-
creases as the optimization period is reduced (i.e., less
available samples) compared to the static strategy. The
problem of statistical variability could be reduced if
several years of wind power observations and predic-
tions were available. In that case the optimization pe-
riod could correspond for example to the same month
as the test period, but taken from all previous years. A
long training history, however, brings along the problem
of possibly several changes in the numerical weather
prediction (NWP) model version leading to changing
forecast error characteristics that prevents the generation
of skillful analogs. The usage of reforecasts, which are
retrospective weather forecasts generated with a fixed
numerical NWP model, could overcome this problem
(Hamill and Whitaker, 2006; Hamill et al., 2006;
Hagedorn et al., 2008, among others).

In future studies, the increase of the AnEn fore-
cast performance by optimizing the predictor combi-
nations with weighting strategies should be compared
with other state-of-the-science approaches for estimat-
ing wind power forecast uncertainty. Alessandrini
et al. (2015) took a first step in this direction by com-
paring the 10-m WS+D AnEn against reference wind
power ensembles at the Sicily wind farm where the ref-
erence forecasts are based on quantile regression and
postprocessing (calibration) of wind predictions from
NWP-based ensembles. An in-depth extension of such
a comparison of statistical and dynamical approaches
would lead to valuable insights about the strengths and
weaknesses of the differing approaches depending on
the complexity of the terrain, lead time, and atmospheric
stratification. In this context, statistical approaches could
be the analog ensemble with predictor-weighting strate-
gies and probabilistic wind power forecasts generated
with for example quantile regression (Nielsen et al.,
2006). In dynamical approaches, first an existing NWP-
based wind ensemble is calibrated with state-of-the-
science post-processing methods (Thorarinsdottir
and Gneiting, 2010; Pinson, 2012; Junk et al., 2014),

and the calibrated ensemble is transformed to wind
power by means of a power curve.

7 Conclusions
In this study, we implemented and tested predictor-
weighting strategies with the goal to improve the analog
ensemble (AnEn) performance for wind power forecast-
ing at on and offshore wind farms. The optimized com-
bination of multiple predictor variables from the high-
resolution ECMWF deterministic forecast are found by
a brute-force CRPS minimization over all possible pre-
dictor combinations given discrete weight values. The
static and dynamic weighting strategies increase deter-
ministic and probabilistic AnEn performance up to 20 %
compared to the AnEn with 10-m wind speed and di-
rection or principal components as predictors at both on
and offshore wind farms. They can accomplish both the
selection of relevant predictors as well as finding their
optimal weights, and also provide reliable estimates of
the forecast uncertainty.

The static and dynamic weighting strategies lead
to strongly site-dependent predictor combinations. For
complex-terrain sites, the terrain is not well represented
by the numerical weather prediction model and wind
speed predictors above the rotor swept area in 300 m are
important to increase wind power predictability. The op-
timized predictor combination at offshore wind farms is
less sensitive to the height of the wind speed predictors.
In fact, in neutral stability conditions as those commonly
found above the sea, near-surface and hub-height wind
predictors are well correlated and lead to similar AnEn
performance. For stably-stratified atmospheric boundary
layers, however, near-surface wind predictors are more
often decoupled from hub-height winds and decrease the
AnEn performance considerably. Wind direction pre-
dictors are particularly important for sites where wind
regimes cause a wind direction dependency of generated
wind power. Predictors such as temperature, pressure,
and geopotential height are of less importance for wind
power predictability compared to wind speed and direc-
tion predictors.

Compared to the static strategy, the dynamic-
weighting strategy continuously updates the weights to
consider the seasonal dependency of the weights. This
strategy, however, does not improve the AnEn perfor-
mance over the static strategy. Furthermore, an alterna-
tive strategy is developed, where principal component
analysis reduces the dimension of the multiple ECMWF
predictor data set and therefore decreases computa-
tional costs of the brute-force approach. The principal-
component weighting strategy has significantly lower
forecast skill, and therefore the computationally more
demanding brute-force optimization approach is the pre-
ferred choice.
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