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ABSTRACT
A new methodology is introduced that leverages data harvested
from social media for tasking the collection of remote-sensing
imagery during disasters or emergencies. The images are then
fused with multiple sources of contributed data for the damage
assessment of transportation infrastructure. The capability is
valuable in situations where environmental hazards such as
hurricanes or severe weather affect very large areas. During
these types of disasters it is paramount to ‘cue’ the collection
of remote-sensing images to assess the impact of fast-moving
and potentially life-threatening events. The methodology con-
sists of two steps. First, real-time data from Twitter are mon-
itored to prioritize the collection of remote-sensing images for
evolving disasters. Commercial satellites are then tasked to
collect high-resolution images of these areas. Second, a damage
assessment of transportation infrastructure is carried out by
fusing the tasked images with contributed data harvested
from social media such as Flickr and Twitter, and any additional
available data. To demonstrate its feasibility, the proposed
methodology is applied and tested on the 2013 Colorado floods
with a special emphasis in Boulder County and the cities of
Boulder and Longmont.
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1. Introduction

Environmental hazards pose a significant threat to the development and sustain-
ment of our society. Rapid population growth, the emergence of megacities, and
high-risk facilities such as high dams and nuclear power plants have increased the
risk posed by natural hazards at unprecedented levels (Tate and Frazier 2013). A
single catastrophic event can claim thousands of lives, cause billions of dollars of
damage, trigger a global economic depression, destroy natural landmarks, render a
large territory uninhabitable, and destabilize the military and political balance in a
region (Keilis-Borok 2002).
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1.1. Remote sensing

Remote-sensing data are paramount during disasters and have become the de facto
standard for providing high-resolution imagery for damage assessment and the coordina-
tion of disaster relief operations (Cutter 2003; Joyce et al. 2009). Organizations such as the
International Charter for Space and Disasters (http://www.disasterscharter.org/) provide
high-resolution images from commercial and research air- and space-borne instruments
within hours of major events, frequently including ‘before’ and ‘after’ scenes of the affected
areas (Stryker and Jones 2009; Duda and Jones 2011; Cervone and Manca 2011). These
‘before’ and ‘after’ images are quickly disseminated through official government portals and
news channels to inform the public of the magnitude of the event, and often serve to
sensibilize citizens about the unfolding tragedies. In addition, first responders rely heavily on
remotely sensed images to coordinate relief and response efforts as well as to prioritize
resource allocations (Cutter 2003).

Determining the location and severity of damage to transportation infrastructure is
particularly critical for establishing evacuation and supply routes as well as repair and
maintenance agendas (Oxendine, Sonwalkar, and Waters 2012). Following the Colorado
floods of September 2013, over 1000 bridges required inspection and approximately
200 miles of highway and 50 bridges were destroyed. The assessment of transportation
infrastructure over such a large area could have been accelerated through the use of
high-resolution imagery and geospatial analysis (Uddin 2011).

Despite the wide availability of large remote-sensing data sets from numerous
sensors, specific data might not be collected in the time and space most urgently
required. Geo-temporal gaps result due to satellite revisit time limitations, atmospheric
opacity, or other obstructions. Tasking instruments on board satellites and other aerial
platforms for data collection is thus crucial for the timely delivery of data for damage
assessment and disaster relief. However, satellite tasking is usually limited by orbital
restrictions and the locations of data-receiving stations. It is usually predefined and
based on the statistical likeliness that data for an area are needed. A small number of
satellite instruments can be oriented to collect data at an oblique angle with respect to
the satellite path. For this class of instruments, a correct tasking can greatly increase the
data coverage during emergencies.

Furthermore, aerial platforms, especially Unmanned Aerial Vehicles (UAVs), can be
quickly deployed to collect data over specific regions. UAVs are capable of providing
high-resolution, near-real-time images often with less expense than manned aerial- or
space-borne platforms. Their quick response time, high manoeuvrability, and resolution
make them important tools for disaster assessment (Tatham 2009). Tasking data collec-
tion for specific regions affected by a hazard is particularly difficult during major events.
For extremely large events such as Hurricane Sandy in 2012 or the Colorado floods of
2013, rapid and systematic evaluations were difficult because the area affected was so
extensive. This difficulty is further enhanced when events quickly unfold and are
mitigated by local infrastructure and relief efforts.

Therefore, it is apparent that during emergencies the tasking of data collection from
remote-sensing platforms must be constantly assessed and refined based on the needs
of emergency responders and the constraints dictated by the number and type of
instruments available. This assessment has historically been based on official
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measurements and established plans, and does not account for the availability of real-
time, on-the-ground data freely contributed by citizens.

1.2. Social media and volunteered geographical information

Novel information streams, such as social media-contributed videos, photographs, and
text as well as other open sources, are redefining situation awareness during emergen-
cies. When these contributed data contain spatial and temporal information, they can
provide valuable Volunteered Geographical Information (VGI), harnessing the power of
‘citizens as sensors’ to provide a multitude of on-the-ground data, often in real time
(Goodchild 2007). There are several opportunities and challenges associated with the
use of VGI. Elwood (2008); Elwood, Goodchild, and Sui (2012) examine the content and
characteristics of VGI, the technical and social processes through which it is produced,
appropriate methods for synthesizing and the use of these data in research, and
emerging social and political concerns related to this new form of information.

Although these volunteered data are often published without scientific intent, and
usually carry little scientific merit, it is still possible to mine mission critical information
(Huang and Xiao 2015). For example, during hurricane Katrina, geolocated pictures and
videos searchable through Google provided early emergency responders with ground-
view information. These data have been used during major events, with the capture, in
near-real-time, of the evolution and impact of major hazards (De Longueville, Smith, and
Luraschi 2009; Pultar et al. 2009; Heverin and Zach 2010; Vieweg et al. 2010; Acar and
Muraki 2011; Verma et al. 2011; Earle, Bowden, and Guy 2012; Tyshchuk et al. 2012).
Specifically, VGI based on Twitter and other non-authoritative data have been shown to
contain valuable data that can be used for improving flood estimation in near-real-time
(Poser and Dransch 2010; McDougall and Temple-Watts 2012; Triglav-Čekada and
Radovan 2013; Schnebele and Cervone 2013; Schnebele et al. 2014a, 2014b).

Volunteered data can be employed to provide timely damage assessment, help in
rescue and relief operations, as well as for the optimization of engineering reconnais-
sance (Laituri and Kodrich 2008; Dashti et al. 2014). While the quantity and real-time
availability of VGI make it a valuable resource for disaster management applications,
data volume, as well as its unstructured, heterogeneous nature, makes the effective use
of VGI challenging. Volunteered data can be diverse, complex, and overwhelming in
volume, velocity, and in the variety of viewpoints they offer (Huang and Xu 2014).
Negotiating these overwhelming streams is beyond the capacity of human analysts.
Current research offers some novel capabilities to utilize these streams in new, ground-
breaking ways, leveraging, fusing, and filtering this new generation of air-, space-, and
ground-based sensor-generated data (Oxendine et al. 2014).

This research presents a novel approach to prioritizing the collection of remote-
sensing data from satellites, airplanes, and UAVs during hazard events by utilizing VGI
as a filtering tool. In addition, it proposes the use of VGI for disaster assessment to fill in
the gaps when remote-sensing data are lacking or incomplete. In order to use social
media efficiently and effectively and VGI to ‘cue’ or augment satellite observations, it is
necessary to filter the data for content and to geolocate them using a variety of text-
mining and network analysis algorithms. Filtering yields a rapid and direct identification

102 G. CERVONE ET AL.

D
ow

nl
oa

de
d 

by
 [6

8.
17

7.
12

9.
57

] a
t 0

9:
10

 1
4 

D
ec

em
be

r 2
01

5 



of affected areas, which can aid authorities to prioritize site visits and response initiatives
as well as to task additional data collection.

1.3. 2013 Boulder CO floods

We present an application of this new methodology to the 2013 floods that occurred
around the City of Boulder, CO. The September 2013 flooding in Colorado was the worst
hydrological disaster in the state’s history. The severity of the event was the result of
extreme precipitation, pre-existing drought, and recent wildfires that hardened the
ground and reduced the vegetation layer. With precipitation exceeding 50 cm in parts
of Boulder County, the area experienced catastrophic flooding, property destruction
totalling over $2 billion in damage, the evacuation of over 180,000 people, and a tragic
loss of eight lives. Damage to transportation infrastructure was especially severe and
affected large areas of the state.

Boulder is located near the foothills of the Rocky Mountains approximately 50 km
northwest from Denver. This unique location has made Boulder the number one flash
flood community in the state of Colorado as major flash floods have developed in the
past and still continue to occur (Elaine 2014). Development in Boulder started in 1910
when prominent planner Frederick Law Olmstead Jr. recommended Boulder Creek be
lined with a park and preserved as open space to limit structural damage in case of a
flood (Crumpacker 1985). More recently the city’s rapidly growing population raised
concerns about the loss of open space. In the last 15 years alone, Boulder has spent
more than $45 million dollars on sustainable projects based on the blueprint of the
community (Elaine 2014). However, the 2013 flood was not the large flash flood officials
had been planning for. It was an unprecedented event where Colorado received the
amount of its average annual precipitation in only eight days.

The 2013 Colorado flood propagated quickly and with little warning. From 11 to 15
September, a catastrophic storm system formed over the Rocky Mountain Front Range
impacting 18 counties and resulting in severe flooding in many parts of Colorado.
Record-breaking precipitation occurred along the Colorado Front Range from Larimer
and Weld Counties southward to El Paso County. Boulder County was the worst hit with
25 cm of rain on 12 September 2013 and over 43 cm by 15 September 2013. The effects
of the storm were not only felt in-state, but flooding and heavy precipitation also
extended into several neighbouring states such as Nebraska, New Mexico, and
Wyoming (Gochis et al. 2014).

1.4. Objectives

The present article describes a methodology and its implementation to achieve two
main objectives.

(1) Using Twitter data to task the collection of remote-sensing data during emergen-
cies. A program called CarbonScanner is described to automatically scan Twitter
data, and to identify hotspots and keywords for an unfolding emergency. While
the current research focuses on commercial high-resolution satellite platforms, it
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can also be applied for the collection of aerial images using manned or
unmanned platforms.

(2) Fusing the tasked remote-sensing images with additional contributed data,
including tweets and VGI, for damage assessment. The current research specifi-
cally discusses the assessment of transportation infrastructure; however, it can be
extended to other situations.

2. Data

Multiple sources of contributed, remote-sensing, and open source geospatial data were
collected and used during this research. A summary of the sources and collection dates
of the contributed and remote-sensing data are available in Table 1.

2.1. Twitter

Twitter is one of the largest social networking sites, and it is widely used to share
information through micro-blogging (Waters 2014). These micro-blogs, or ‘tweets’, are
limited to 140 characters, so abbreviations and colloquial phrasing are common, making
the automation of filtering by content challenging. Twitter is very popular during
emergencies and disasters, and it is being used by both official government agencies
and the public to disseminate information.

Central to the operation of Twitter is the use of hashtags, words or unspaced phrases
prefixed with the sign #. They are identifiers unique to Twitter and are frequently used to
search and filter information. The creation and use of a hashtag can be established by
any user who wants to create a concept category to share specific information about a
subject. For example, during the 2013 Boulder floods, the hashtag #boulderflood was
used by users and agencies to share information about this particular event.

Twitter data can be queried for specific hashtags or text present in the tweets, and for
spatial and temporal constraints. There are several web-based tools and an API for the
automatic querying, filtering, and displaying of tweets. For this study, tweets are
harvested using the CarbonScanner application to identify ‘hotspots’ and task satellite
data collection. CarbonScanner scans tweets, identifies relevant keywords and hashtags,
and georectifies the data (see Sections 3.1.2 and 3.1.1).

Table 1. Quantity of data collected for each source from 11 September 2013 to 21 September 2013.
The ‘many’ for the Falcon UAV indicates that a stream of images was collected.

September

Data Source 11 12 13 14 15 16 17 18 19 20 21

Ground
Tweets 191 22432 57840 20923 22295 13419 7878 3401
Flickr Photographs 2 313 37 334 20 517 8
Aerial Images
CAP 1595 33 1572 894 67 654 104 788
Falcon UAV many many many
Satellite Images
WorldView2 2 5 3
Landsat 8 1
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The specific geographical locations, hashtags, and keywords identified by
CarbonScanner are used to collect additional Twitter data using applications developed
at The Pennsylvania State and the University of Wisconsin at Madison. Specifically, for
the current research the following three criteria were used:

● Tweets extending from 105°4ʹ53ʹʹ – 105°17ʹ50ʺ W and 40°5ʹ58ʹʹ – 39°57ʹ12ʺ N and
containing the hashtag ‘#boulderflood’ from 12 to 16 September 2013;

● Tweets extending from 105°01ʹ56ʹʹ – 105°25ʹ49ʺ W and 40°5ʹ58ʹʹ – 39°56ʹ01ʺ N and
containing all hashtags from 11 to 17 September 2013; and

● Tweets extending from 12 to 16 September 2013 and containing the hashtag
‘#boulderflood’.

About 150,000 tweets have been analysed in the current research (see Table 1).

2.2. Ground photographs

Ground photographs contributed both by official sources and by ordinary citizens were
collected to document the flooding in the Boulder area. For this study, a total of 1232
images relative to the period from 11 to 17 September 2013 were harvested using Flickr,
a popular image-sharing portal (http://www.flickr.com). Flickr provides an API to query
for spatial and temporal extents, making it possible to fully automate the analysis. Only
geotagged Flickr photographs were used.

2.3. WorldView2

Ten, full-resolution GeoTIFF WorldView2 multispectral images collected by Digital Globe on
13 September 2013 (two images), 14 September 2013 (five images), and 17 September 2013
(three images) provide high-resolution data of Boulder and the surrounding counties. The
WorldView2 data used were tasked using the CarbonScanner application developed for this
research.

WorldView2 is a commercial Earth observation satellite owned and operated by
DigitalGlobe that was launched into orbit on 8 October 2009. It provides commercially
available panchromatic images of 0.46 m resolution, and eight-band multispectral
images with 1.84 m resolution.

The eight multispectral bands at a 1.84 m resolution cover the following part of the
electromagnetic (EM) spectrum: coastal (0.400–0.450 µm), blue (0.450–0.510 µm), green
(0.510–0.580 µm), yellow (0.585–0.625 µm), red (0.630–0.690 µm), red edge (0.705–
0.745 µm), near-IR 1 (0.770–0.895 µm), and near-IR 2 (0.860–0.900 µm).

2.4. Landsat 8

Two resolution multispectral Landsat 8 OLI/TIRS images collected on 12 May 2013 and
on 17 September 2013 provide data of the Boulder County area before and after the
flooding, respectively. The data were downloaded from the United States Geological
Survey (USGS) Hazards Data Distribution System (HDDS).
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Landsat 8 consists of nine spectral bands with a resolution of 30 m: Band 1 (coastal
aerosol, useful for coastal and aerosol studies, 0.430–0.450 µm); Bands 2–4 (optical,
0.450–0.510, 0.530–0.590, 0.64–0.67 µm), Band 5 (near-IR, 0.850–0.880 µm), Bands 6
and 7 (shortwave-IR, 1.570–1.650, 2.110–2.290 µm), and Band 9 (cirrus, useful for cirrus
cloud detection, 1.36–1.38 µm). In addition, a 15 m panchromatic band (Band 8, 0.500–
0.680 µm) and two 100 m thermal IR (Bands 10 and 11, 10.600–11.190, 11.500–
12.510 µm) were also collected from Landsat 8 OLI/TIRS.

2.5. Civil Air Patrol

Satellite remote-sensing data may be insufficient as a function of spatial resolution,
revisit time, or may be obstructed due to clouds or vegetation. Therefore, data from
other sources can be used to provide supplemental information.

The Civil Air Patrol (CAP) is a congressionally funded, non-profit corporation that
functions as an auxiliary to the United States Air Force. The CAP conducts a variety of
missions in support of federal, state, local, and non-governmental entities, including search
and rescue, disaster relief support, and aerial reconnaissance for homeland security.

CAP images were captured from 14 to 17 September 2013 in the areas surrounding
Boulder (105°32′11ʹ – 104°59′33ʹ W and 40°15ʹ37ʹ – 39°56ʹ10ʹ N) and provide a third
source of remote-sensing data. The georeferenced CAP red-green-blue (RGB) composite
images were downloaded from the USGS HDDS.

2.6. Falcon UAV

Falcon UAV images were collected over the cities of Lyons and Longmont from 12 to 14
September 2013. Falcon UAV collected valuable RGB composite images while other
aircraft were grounded due to weather conditions (http://www.falconunmanned.com/).
The mosaicked, georeferenced images were downloaded as a .kmz file from the Falcon
Unmanned website.

2.7. Open source geospatial data

Shapefiles defining the extent of the City of Boulder and Boulder County were down-
loaded from the City of Boulder (https://bouldercolorado.gov) and the Colorado
Department of Local Affairs (http://www.colorado.gov) websites, respectively. In addi-
tion, a 2012 TIGER/line® shapefile of road networks for Boulder County was downloaded
from the United States Census Bureau (http://www.census.gov).

3. Methodology

The proposed methodology is based on two separate tasks:

(1) Remote-sensing data collection
(2) Damage assessment
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Figure 1 shows the flow chart of the proposed methodology, indicating three main
phases. The first phase consists of a series of methods to ingest and process Twitter data
to identify regions of interest and to task remote-sensing data collection. Data are also
added to characterize the transportation infrastructure network (e.g. roads, tunnels,
bridges). Additional VGI data such as photographs and aerial images are also down-
loaded. In the second phase, Twitter data are fused with the tasked remote-sensing data,
and the additional VGI to estimate the damage. In the final and third phase the data are
made freely accessible through web services.

3.1. Remote-sensing data collection

The first task consists of the analysis of Twitter data to identify the location of natural
hazards, or ‘hot spots’, and the tasking of remote-sensing data collection for these areas.

3.1.1. Geolocation of tweets
The proposed methodology is heavily dependent on the availability of geolocated data.
Only between 1% and 2% of all tweets contain geolocation information. Because of the
huge volume of Twitter data, usually even such a small percentage can be used to
extract meaningful spatial patterns. However, during emergencies it is paramount to
maximize the amount of spatial information, and therefore it is necessary to find
alternative methodologies for geolocating tweets.

For each tweet entry that does not contain geolocation information collected by the
CarbonScanner application, all non-words are removed (punctuation, special characters,
URLs, emoticons, and white space). The remaining text is then tokenized into uni-, bi-,
and tri-grams, which correspond to one, two, and three consecutive words after stop
words (e.g. a, an, and are). All of the stop words are removed. Each n-gram is queried
against a gazetteer database. A gazetteer is a geographic index or dictionary to help
identify the geographic location associated with a place name. In general, gazetteer
entries consist of place names, locations, and other descriptive information. For this
work, a database was created using data from the USGS and from GeoNames (http://
www.geonames.org/), and containing approximately 2.1 million entries. If a match is

Figure 1. Flow chart of the proposed methodology.
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returned for a place name query, the associated geometry is used to derive the location
of the tweet where it was sent from. If the location of a place is represented as a polyline
or polygon feature, its centroid is used to georeference the tweet. The CarbonScanner
constantly processes Twitter streams and matches the tweet content to the gazetteer
database in real time.

This same methodology is employed to geolocate the tweets used for damage
assessment (Section 3.2). As a result, an additional 8% of tweets were given location
information, increasing the percentage of geolocated tweets used in this research from
the original 2% (circa 3000 tweets) to 10% (circa 15,000 tweets).

3.1.2. Identification of hot spots
The CarbonScanner scanning application was developed to access and harvest social
media data by browsing Twitter in real time. This application ‘scans’ the United States
each hour to assess and generate alerts by clustering in space and time tweets whose
text contains specific keywords for natural hazards (e.g. floods, tornadoes). These alerts
or ‘hot spots’ are areas where natural hazards may be potentially occurring. The
application system is highly flexible with filter settings managed by a portal service
enabling manager-level users to quickly adjust keyword and other settings as events
develop.

A potential event is detected when a significant amount of activity (in space and
time) is identified in a region. In this work, the threshold for significant activity is set to
10 tweets within a 100 km2 area. A 100 km2 extent was selected because it is sufficient
to capture significant transportation infrastructure in many urban areas as well as being
the minimum ordering area for DigitalGlobe orthorectified images. The threshold set-
tings can be adjusted to user requirements or preferences. When the threshold is
reached, an alert box is generated, cueing the collection of images for that region.
The request for data collection is automatically issued to DigitalGlobe, which is satisfied
pending the constraints of the satellites and their orbits.

Figure 2(a) shows the CarbonScanner application during the 2013 Boulder floods
identifying several tweets that clustered in space and time, and which caused an alert to
be generated. The alert boxes generated are shown in Figure 2(b). An additional task
performed by CarbonScanner is the identification of most common hashtags among the
tweets that are used to generate an alert. These hashtags are used to query additional
Twitter data for damage assessment.

Once the data are acquired, they are made available as open data services. The
imagery is deployed in near-real-time using OpenImageMap (http://www.cubewerx.
com/solutions/openimagemap/) services as well as other open mapping services includ-
ing Open Geospatial Consortium Web Map Service (OGC WMS), Web Map Tile Services
(WMTS), Web Coverage Services (WCS), Google Maps API, Google Earth KML overlays,
and Open Source Geospatial Foundation Tile Map Service (OSGeo TMS). Providing the
images in an open source format ensures rapid deployment as well as open access to
the data. System settings are adjustable and managed by a portal service enabling
manager-level users to quickly add images, manage services, and access controls.
Images may also be accessed by the WMS standard and combined with National
Spatial Data Infrastructure (NSDI) framework data in any GIS supporting this popular
standard.
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3.2. Damage assessment

Once a potential ‘hot spot’ is identified and remote-sensing data tasked and acquired,
these images are fused with Twitter and additional available data for damage assess-
ment. For the Boulder flood test case described, the most important task consisted in
identifying the flood extent. This task called for the automatic detection of water in the
images available (satellite, aerial, ground), as well as the identification of tweets that
specifically mentioned flooded areas. This damage assessment is tailored to classify
transportation infrastructure during and after an event to determine which roads are
impassable.

3.2.1. Classification of satellite images
A decision tree supervised machine learning classifier is employed to semi-automatically
identify water regions in each of the satellite images (Ripley 2008).

Cervone and Haack (2012) describe the general rule induction methodology and its
implementation used in this study.

Several control areas of roughly the same are manually identified as examples and
counter-examples of water pixels. This task involves visually inspecting the images using
graphics software to identify the flooded and non-flooded regions. These regions are
then used as training events by the classifier, which learns a binary decision tree. This is
an upside-down tree-like structure, where each node is an attribute-value condition (e.g.
band_7 < .088), and each branch represents the path that is taken if the condition is
satisfied (left) or not (right). A classification is made by transversing the entire tree
starting at the root, and assigning the class (water or no water) associated with the leaf.

Figure 3 shows a sample decision tree built using multispectral satellite data for the
classification of pixels. In this particular example, class 1 is water, class 2 is an urban area,
and class 3 is a vegetated area.

The learned tree is used to classify all pixels in all images available. The decision tree
algorithm uses a combination of bands to determine a classification. Most important is
the near-IR band because in this part of the EM spectrum, water is easily distinguished
from soil and vegetation due to its strong absorption (Smith 1997).

(a) (b)

Figure 2. Screenshot of CarbonScanner during the 2013 Boulder floods showing filtered and
geolocated tweets captured by scanning application in real time (a), and the alert box generated
for which remote-sensing data collection was tasked (b).
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3.2.2. Classification of RGB images
Working with aerial and ground images poses challenges because the data are usually
collected using conventional digital cameras that can only capture information in visible
light. Therefore, each image contains only thee spectral channels in RGB colour space.
Conversely, advanced multispectral sensors available through various remote-sensing
platforms are structured to collect data in different parts of the EM spectrum usually
ranging from ultraviolet (UV) to emissive infrared (IR). For the identification of water,
near-IR is particularly important (see Section 3.2.1).

The aerial (CAP and Falcon UAV) and ground images are classified using an ensemble
of a supervised decision tree machine learning classifier and a Maximum Likelihood
Classifier. Two classifiers are used because of the additional difficulty introduced by the
lack of IR information.

Furthermore, because of the lack of IR data, a 2D wavelet transformation using the
Haar mother wavelet is first run to extract texture information for all the images, and
thus expands the search space beyond RGB. Then for each transformed image repre-
sentation (RGB + wavelet coefficient components) a decision tree learning algorithm is
used to classify each pixel as water in a similar manner to that described in Section 3.2.1.

There are thousands of aerial images, and thus training regions are chosen only in a
small subset of the total data. Once the decision tree is learned using this small training
set, it is applied to all images in the data set. An identical process is repeated for the
ground images.

The overall goal of the proposed method is not to achieve a 100% accuracy in pixel
classification, but rather to perform a quick assessment to determine which areas are

Figure 3. Decision Tree learned for the classification of pixels of a satellite image into one of three
classes. In this particular example, class 1 is water, class 2 is an urban area, and class 3 is a vegetated
area.
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more likely to be flooded. Even if large errors might occur, they are naturally filtered and
smoothed when thousands of points across the different data sets are fused together.

3.2.3. Spatial interpolation
The data fusion problem consists of merging together heterogeneous data with differ-
ent temporal and spatial resolutions. Furthermore, especially in the case of tweets, the
amount of data to be analysed is very large although it is usually only 1% of the entire
data stream. This is usually referred to as the ‘Big Data paradox’, where very large
amounts of data to be analysed are only a small sample of the total data. This sample
might or might not be representative of the distribution of the entire population.

The absence of data in some parts of the region is likely to underestimate the total
damage. To compensate for missing data, a non-homogeneous weighting is employed
(Tobler 1970, 236). This assumes some level of dependence among spatial data as well
as to closely examine spatial information found to be inconsistent with its surroundings
(Waters, forthcoming). For these reasons a punctual representation of data may not be
sufficient to provide a complete portrayal of the hazard; therefore a spatial interpolation
is employed to estimate flood conditions and damage from point sources.

Spatial interpolation consists of estimating the damage at unsampled locations by
using information about the nearest available measured points. This process can be
implemented by using two different approaches: deterministic models and statistical
techniques. The first method does not provide an indication of the extent of possible
errors, whereas the second method supplies probabilistic estimates. Deterministic mod-
els include Inverse Distance Weighted (IDW), Rectangular and Spline (Waters 2009).
Statistical methods include Kriging and kernel (Myers 1994).

Kernel interpolation is the most popular non-parametric density estimator that is a
function p̂ : <! ð<ÞN ! <, where < indicates the set of all real numbers. In particular
the density estimate p̂ xð Þ for a given value of x is equal to

p̂ xð Þ ¼ 1
Nh

XN

i¼1

K
x % xi
h

! "
; (1)

where K is the kernel function, h is the bandwidth (Raykar and Duraiswami 2006), N is
the number of observed points, xi are the observed data points, and i is the point
number. The density estimator chosen for this work is a Gaussian kernel with zero mean
and unit variance having the following form:

p̂ xð Þ ¼ 1

N
ffiffiffiffiffiffiffiffiffiffi
2πh2

p
XN

i¼1

e
% x%xið Þ2

2h2 ; (2)

where N, h, and xi are scalars and, as for Equation (1), respectively, represent the number
of observed points, the bandwidth, and the observed data points. Kernel interpolation is
often preferred because it provides an estimate of error as opposed to methods based
on radial basis functions. In addition, it is more effective than a Kriging interpolation in
case of small data sets (e.g. the data set of photographs in this project) or data with non-
stationary behaviour (all data sets used) (Mühlenstädt and Kuhnt 2011).

The result of a kernel density estimation will depend on the kernel K and the
bandwidth h chosen. The former is linked to the shape, or function, of the curve centred
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over each point whereas the latter determines the width of the function. The choice of
bandwidth will exert greater influence over an interpolation result than the kernel
function. Indeed, as the value of the bandwidth decreases, the local weight of single
observations will increase. There are different methods for choosing an appropriate
bandwidth. For example, it can be identified as the value that minimizes the approxima-
tion of the error between the estimate p̂ xð Þ and the actual density p(x) as explained in
Raykar and Duraiswami (2006). In this work, a spatial kernel estimation is used because
of the geographical nature of the data, and an optimal bandwidth matrix is chosen
using the method illustrated in Duong and Hazelton (2005).

Because confidence in data may vary with source characteristics, bandwidth selection
can be adjusted for each data type. The basic idea is that the more certain the
information given by a kind of data, the higher the chosen bandwidth. For example,
aerial or ground images can be weighted according to the amount of water pixels
identified by the machine learning classification. Some layers might be weighted more
highly because they originated from official sources, or can be quantified and verified.
On the other hand, tweets are very subjective and often reflect users’ feelings. Without
performing a sentiment analysis of the tweets (Mohammad, Kiritchenko, and Zhu 2013),
it is safer to weigh them lower than quantitative data.

3.3. Transportation damage assessment

The assessment of transportation facilities, such as roads, railways, and bridges, is
performed by overlaying the satellite flood extent and the contoured interpolation
over a street layer. The facilities that fall within the flooded area and the contoured
interpolation are predicted to be affected and potentially impassable. The degree to
which they are affected is a function of the interpolation value and the satellite flood
estimation. Generally, all roads that are inside the satellite flood extent are marked as
having severe damage.

4. Results

The CarbonScanner application detected a ‘hot spot’ of Twitter activity in Colorado
beginning 11 September 2013 for which remote-sensing imagery was tasked. Ten
WorldView2 high-resolution satellite images were acquired as a result of the request.
The damage assessment of transportation infrastructure was performed by fusing these
satellite images with Twitter data and the other sources available as described in
Section 2.

4.1. Classification of images

The supervised machine learning classification discussed in Section 3.2.1 was used to
identify water pixels from the WorldView2 and Landsat8 satellite data. A total of six
control regions of roughly 150! 150 pixels were identified for each image, three as
examples of flooded areas and three as counter-examples of non-flooded areas. The
decision tree algorithm was trained on these control areas, and the results were used to
classify all remaining pixels. This process was repeated for each of the 12 images (10

112 G. CERVONE ET AL.

D
ow

nl
oa

de
d 

by
 [6

8.
17

7.
12

9.
57

] a
t 0

9:
10

 1
4 

D
ec

em
be

r 2
01

5 



WorldView2 and two Landsat8). The supervised classification was applied to each scene
individually to account for differences in brightness values and the results were merged
together in a single layer.

Remote-sensing pixel classification is a very common data analysis process, and it
does not present particular problems. However, it is intrinsically limited by the spatial
resolution of the images, and the presence of clouds. The use of supplemental data
sources, such as the CAP aerial photographs and the Falcon UAV data, shows flooding in
areas that are not captured by the satellite remote sensing. In the case of the Boulder
flooding, the cloud cover over the front range and western parts of the City of Boulder
made the identification of water from satellite platforms difficult. The ability of planes to
fly below cloud cover as well as to collect data without the revisit limitation common to
space-borne platforms allowed the CAP to capture flooding and damage that was not
visible in the satellite images.

The supervised machine learning classification discussed in Section 3.2.2 was applied
to the CAP data. First, 40 images were selected at random, and for each image three
control regions were identified as examples of flooded pixels and three regions as
counter-examples of non-flooded pixels. All the control regions were kept the same at
150! 150 pixels. The models learned by the decision tree and maximum likelihood
algorithms were then applied to all of the data to quantify the amount of flooded pixels.

Specifically, each pixel was classified as one of three classes: No water (NW), water in
one classifier (C1), and water in both classifiers (C2). By using an ensemble of classifiers, a
measure of uncertainty can be derived. For example, Figures 4(a) and (b) show a
classified image (a) and the original RGB version (b). In the figure, the pixels classified

(a) (b)

(c) (d) (e)

Figure 4. Water pixel classification in aerial images: (a) CAP classified, (b) CAP original, (c) Digital
Globe pre-flood, (d) Falcon UAV, and (e) classified Falcon UAV. CAP image classification by both
classifiers (blue) or by a single classifier (teal). The Falcon UAV classified image shows significant
damage sustained by roads and bridges.
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as NW are left in the original colour, those classified as C1 are shown in transparent teal,
and those classified as C2 as solid blue. An identical process was applied to the
classification of the Falcon UAV images. For this task 10 control regions were chosen
throughout the scene acquired, five for flooded and five for non-flooded pixels, and
used as input for the decision tree algorithm. The learned decision tree was used to
classify the entire acquired scene.

Figures 4(c)–(e) show a change detection analysis performed using the methodology
for a region with significant transportation infrastructure. The figure shows high-resolution
Digital Globe data as ‘before’ images (c) and the Falcon UAV photographs as ‘after’ images
(d), and the results of the classification performed (e). This figure illustrates how aerial data
collected from a UAV provide valuable, timely, high-resolution details of flooding and
affected transportation infrastructure. The use of these high-resolution images allows
flooding and damage to be identified within a few metres in near-real-time.

4.2. Damage assessment

Following the collection of remote-sensing data, contributed data were also collected,
geolocated, and interpolated. The WorldView2 images were manually georectified using
the high-resolution road layer obtained by the City of Boulder website. All of the data
are overlaid on the remote-sensing classification to provide an enhanced indication of
flood activity.

Figure 5 provides a summary of the data available for damage assessment and
Figure 6 a zoom over the cities of Boulder and Longmont, CO, which were studied in
detail. The CAP data were acquired along major rivers, reservoirs, and areas that were at
risk of flooding. The contributed tweets and photographs had a clear spatial distribution
that corresponded to the population density. The highest concentration of tweets and
photographs were found in the City of Boulder.

The high concentration of VGI was due to a high population density, composed in
part by young and highly educated students and young professionals. In fact, Boulder
CO is home to the University of Colorado, and several research institutions (e.g. National
Center for Atmospheric Research (NCAR), National Renewable Energy Laboratory (NREL),
National Institute of Standards and Technology (NIST)) and high technology companies
(e.g. Google, Oracle). The Falcon UAV footprint is shown in the NE corner of Figure 6
corresponding to the city of Longmont. Although the UAV data were available only for a
small area, they proved crucial because the WorldView2 image contained several clouds
exactly in this region, and thus could only be partially used for damage assessment.

All the satellite images available were co-registered, and classified using their
multispectral channels. The satellite classified layer was compared with the FEMA
flood estimation available for Boulder County. An area analysis between the FEMA
and the satellite flood estimation shows a spatial correlation of 87%. The errors
show a tendency of both WorldView2 and Landsat to underestimate the flood
extent, which can be explained by the presence of clouds. This correlation was
performed only on about 65% of Boulder County because the satellite imagery
limited spatial coverage extent. The kernel interpolation was performed using all of
the contributed data to refine the satellite flood estimation. The kernel result
extends the flood area well beyond the FEMA map, including several downtown
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areas. Results are shown for the cities of Boulder and Longmont, where different
combinations of data are available.

4.2.1. Road damage assessment: case 1
A transportation damage assessment was performed for the City of Boulder, CO. The
supervised classification of remote-sensing data classified very few water pixels in the City
of Boulder. This is likely due to the images being collected about a week after the flood event
began, whenwatersmight have already partially or fully receded. The presence of obstructing
vegetation and cloud cover might also have prevented a clear view of the ground.

Figure 7(a) shows a map of the satellite water classification and the FEMA flood map
for Boulder City and County. There is a good agreement between the two flood maps,
and large areas classified as water in downtown Boulder are absent. This lack of flooding
contradicts the contributed data that indicate different levels of flooding throughout the
City of Boulder. Figure 7(b) shows the distribution of the contributed data (tweets,
photographs, and CAP images), and the kernel interpolation generated.

The kernel interpolation was used to predict which roads were more likely to be
damaged and impassable. Figure 7(c) shows the roads classified as having medium,
moderate, and severe damage, along with roads predicted not to have been affected.
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Figure 5. Data sources available, including Flickr ground photographs, tweets, CAP, Falcon UAV, and
the satellite water classification. The road network is also shown.
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While there may be uncertainties associated with the information obtained from tweets,
the presence of flooding and damage is more easily verified in photographs. This was
captured by the kernel interpolation by using a larger bandwidth to weight these data
more heavily. Finally, Figure 7(d) overlays the predicted closures with roads that were
closed by the Boulder EOC. The kernel prediction included all roads that were effectively
closed, but overestimated two regions predicting moderate damage that did not occur.

The results obtained are very important because they show that transportation
damage assessment can be effectively performed even in the absence of remote-sensing
classification. Furthermore, the contributed data captured the subjective perception of
the people who experienced the flood event. Fusing remote-sensing data with Twitter
and other VGI presents the additional challenge of fusing quantitative data acquired
through precise measurements of EM radiation, with qualitative data that are very
subjective and only based on perceptions.

Table 2 shows a small sample of tweets collected on 12 and 13 September 2013 during
the peak of the flooding. One of the tweets described the event as being the worst ever
seen. While the flooding of downtown Boulder caused severe damage, in terms of flood
area it was rather limited, and in fact it was barely detected by the satellites.
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Figure 6. Data sources over the cities of Boulder and Longmont, CO, used for damage assessment,
including Flickr ground photographs, tweets, CAP, Falcon UAV, and the satellite water classification.
The road network is also shown.
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Figure 7. Map of Boulder City and County showing the satellite water classification and the FEMA
flood map (a), interpolated damage surface created using CAP, ground photographs, and Twitter
data (b), predicted roads damage based on the interpolation, classified as moderate, medium, and
severe, classifications (c), roads that were closed by the Boulder Emergency Operations Center (EOC)
(d). The road network is also shown in each figure.

Table 2. Sample of Tweets located in Boulder illustrating the subjective nature of the tweets.
Latitude N Longitude W Date Time Tweet text

39°59ʹ56ʺ 105°15ʹ02ʺ 12 September 2013 17:36 I have never seen anything like this. Dear God.
#boulderflood

40°01ʹ03ʺ 105°16ʹ48ʺ 12 September 2013 20:45 Left my wife and brother on the other side of the
newly formed crick #BoulderFlood

40°00ʹ57ʺ 105°16ʹ16ʺ 13 September 2013 2:01 Worst comes to worst I get submerged in the
water and become a mermaid. #IAintEvacuating

40°00ʹ60ʺ 105°16ʹ01ʺ 13 September 2013 2:34 Surviving a small/medium sized tsunami in
#Boulder right about now.

39°58ʹ34ʺ 105°15ʹ50ʺ 12 September 2013 17:39 Woah just got a text from CU Boulder saying ‘wall
of water coming down canyon’ #boulderflood

40°00ʹ40ʺ 105°15ʹ29ʺ 13 September 2013 18:21 This water is insane #boulderflood http://t.co/
WCJfq3hIyv
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Other tweets described the event as a ‘tsunami’, the water being ‘insane’, and
creeks being formed downtown. Some users used humorous language to describe
the situation, while at the same time stating that they did not intend to evacuate.
All this information, while being qualitative and very subjective, could still be
harvested for damage assessment, as seen for the prediction of closed roads.
Finally, some of the tweets were annotated with links to a picture (see the last
event in Table 2). In this work all tweets have been weighted equally; however, it is
possible to give higher weights to messages that link to photographs.

4.2.2. Road damage assessment: case 2
A transportation damage assessment was performed for the city of Longmont, CO.
Longmont is located about 20 km NE of Boulder, and suffered extensive damage as a
result of the floods. This damage assessment presented different challenges than those
from Boulder. First of all, there was a smaller number of contributed data due to the
lower population density and different demographics. Second, this region was observed
using the Falcon UAV, which provided a timely high-resolution view of the flooded area.
Furthermore, the WorldView2 data contained a large amount of clouds exactly where
most of the damage was recorded.

Figure 8 shows a map for the study area (a), and the footprint of the Falcon UAV data
used (b). There were only a limited number of tweets and CAP images for this area. A
comparison between the satellite water classification and the FEMA flood map shows
that the former underestimated the flood extent due to the presence of thick clouds in
the centre of the image. When clouds were not present, the classification agreed with
the FEMA map, and several roads were identified as being impassable. Five labels, i–iv,
are included in Figure 8(a), which identify four tweets and one location where both CAP
and UAV data were available. The tweets shown in Table 3 describe extensive damage to
both roads and railways, and include links to pictures that can be used to assess the
damage.

Figures 8(c)–(f) show the pictures associated with the tweets (i–iv) shown in Table 3
and in Figure 8(a). Figure 8(c) shows extensive damage to highway 36, which was not
captured by the satellite classification. Mostly because of this image, the kernel inter-
polation predicted that this stretch of the road was impassable. Figure 8(d) shows
extensive damage to a railway, which was totally occluded by clouds, and just at the
edge of the data collected by the UAV, and thus not visible in either of the data sets.
Figures 8(e) and (f) are two images associated with the same number of tweets that
show two impassable roads. The satellite classification did not include these roads in the
flooded area, and thus they were predicted as damaged only because of the cluster of
tweets (see Figure 8(a)).

Figures 8(e)–(f) are from the same region, and illustrate damage to a bridge and roads
in the surrounding areas. The first two images were collected by the Falcon UAV on 13
September 2013. The last image shows the same bridge collected by CAP aerial imagery
on 19 September 2013. While the bridge is almost entirely submerged in the UAV
imagery, it appears driveable in the CAP image. In fact, the CAP imagery was acquired
six days after the UAV data, when the water might have already receded in this region.
This result suggests the critical role that UAV data play during emergencies, because
UAVs can be deployed quickly and in adverse atmospheric conditions when manned
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Figure 8. Map of the City of Longmont showing as basemap WorldView2 data band 3 and the data
used for damage assessment, including CAP, tweets, Falcon UAV, and the FEMA flood map (a), the
Falcon UAV data used in this study (b), images associated with tweets showing different damage to
roads and railways (c–f), view of a damaged bridge in Falcon UAV imagery (g), Falcon UAV classified
image (h), and the same bridge viewed in CAP data (i).

Table 3. Tweets used for the damage assessment in Longmont.
Latitude N Longitude W Date Time Label Tweet text

40°09ʹ55ʺ 105°06ʹ18ʺ 17 September 2013 15:20 i Hwy 36 in #Lyons. #stvrainflood #coflood
lyons bridge at hwy 36 http://t.co/
ksN1Uo60kA

40°09ʹ32ʺ 105°06ʹ40ʺ 14 September 2013 16:02 ii Wow! Look what the #coflood did to the
BNSFRailway looks more like a rollercoaster!
http://t.co/4AKdZmhkmc

40°08ʹ56ʺ 105°07ʹ16ʺ 12 September 2013 19:04 iii, iv #boulderflood Boulder is in trouble folks.
My employer isn’t even attempting to open
today. Massive flooding. 100 year flood?
Looks like it. http://t.co/L8mvtzVFwE http://
t.co/Fmbh6vPwrX
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airplanes are grounded. Additionally, if data with enough temporal and spatial coverage
are available, it is possible to map the damage over time.

4.2.3. Road damage assessment: case 3
A road transportation assessment was performed for another part of Longmont CO,
where an unobstructed satellite view led to the classification of several areas as flooded.
Figure 9(a) shows a map for a specific region where the kernel interpolation identifies
one road as being potentially damaged due to the area being classified as flooded both

(a)
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Figure 9. Map showing WorldView2 band 3 for an additional area northeast of Longmont, which
suffered severe damage (a), and a close-up view of a submerged road (b), CAP image showing the
same submerged road and identifying with a square a stranded truck (c), the same CAP image
classified for water pixels (d), a CAP image close-up view of the stranded truck (e), and the same
truck in a Flickr post (e).
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in the satellite and in the CAP images, as well as being tagged flooded in two Flickr
photographs. The figure shows the WorldView2 band 3 as background along with the
FEMA flood map. In this particular case the damage assessment was accomplished by
fusing satellite and contributed data, both of which were collected at roughly the same
time.

Figure 9(b) is a close-up view that illustrates a road that is totally submerged. The
cluster of white pixels to the right of the water flowing over and past the road is likely to
be a stranded truck. Figure 9(c) shows a CAP image where it is possible to discern the
submerged road and a stalled truck, highlighted with a square, and (d) shows the same
image automatically classified by the machine learning classifiers with the extensive
flooded area correctly identified. Figure 9(c) shows a close-up for the area with the
stranded truck, and (d) shows a picture taken on the ground and posted on Flickr of the
same partially submerged truck. The CAP images and the ground Flickr photograph
were collected only a few hours apart. The kernel interpolation reflects the fact that
satellite, CAP, and Flickr images all suggest the area is compromised, and correctly
identifies this area as flooded and this particular road as being impassable.

5. Conclusions

This article presents a methodology that uses Twitter data to prioritize remote-sensing
tasking and VGI data collection. A transportation damage assessment is performed by
fusing the acquired remote-sensing data, Twitter data, and other contributed data such
as aerial and ground images. Satellite data and available images are classified for water
pixels using supervised machine learning. A spatial interpolation is performed to fuse
the data by weighting each source according to a perceived trust level. Transportation
damage assessment is performed by overlaying the interpolation results and the satellite
data flood extent over a road layer.

Twitter is shown as an effective source of data to identify ‘hot spots’ and to task
remote-sensing data collection for the 2013 Boulder floods. While only satellite data
were tasked for this event, the same methodology can be used to task the collection of
aerial imagery through UAV and manned platforms, as well as ground imagery. Crucial
to the proposed methodology is the geolocation of tweets and other contributed data.
A method is proposed that tries to augment Twitter data with no geolocation informa-
tion by performing a text analysis, and matching extracted place names with a geoda-
tabase. Using this method an additional 8% of Twitter data were geolocated.

Results show roads, railways, and bridges damage assessment performed over
the cities of Boulder and Longmont. In the case of Boulder, the road damage
prediction was compared with a list of officially closed roads, and a good match
between predictions and observations is found. Results for Longmont show that
tweets and photographs are crucial to estimate road closures when clouds are
present and satellite flood extent cannot be performed. Furthermore, the predicted
road closures extend beyond the FEMA flood map. The use of UAV data is particu-
larly suitable for the estimation of transportation infrastructure due to the high
spatial resolution, and the ability of UAVs to fly below clouds and in adverse
meteorological conditions when manned aircraft might be grounded. UAVs can
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play a crucial role in generating temporal data by repeating the data acquisition to
quantify damage over time.

While this article focuses on flood events, the same methodology can be applied to
different natural hazards and emergencies. The steady deployment of more high-resolu-
tion satellite and aerial sensors to monitor the Earth and its environment, paired with
the dramatic increase of VGI, will generate an unprecedented amount of data that can
be used during emergencies. The automated analysis of this massive amount of geos-
patial data is paramount, suggesting that the proposed methodology and its extensions
will find wide applicability for years to come.
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