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ABSTRACT 

Traditional GIS tools and systems are powerful for analyzing 
geographic information for various applications but they are not 
designed for processing dynamic streams of data. This paper 
presents a CyberGIS framework that can automatically synthesize 
multi-sourced data, such as social media and socioeconomic data, 
to track disaster events,  to produce maps, and to perform 
statistical analysis for disaster management. Within our 
framework, Apache Hive, Hadoop, and Mahout are used as 
scalable distributed storage, computing environment and machine 
learning library to store, process and mine massive social media 
data. The proposed framework is capable of supporting big data 
analytics of multiple sources. A prototype is implemented and 
tested using the 2011 Hurricane Sandy as a case study. 
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General Terms 
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1.   INTRODUCTION 
GIS plays an important role in disaster management by producing 
various hazard maps to support different activities, operations and 
decision making processes. For example, first responders and 
emergency staff on the ground rely on street maps for search and 
rescue operations. During emergencies resulting from disasters 
(e.g., by floods or earthquakes), decision makers need to use 
“situational awareness” maps for understanding areas that are 

either damaged or likely to become so, mapping road closures and 
access restrictions, identifying locations of shelters, kitchens, and 
medicine distribution points, and the locations of environmentally 
hazardous sites. Similarly, disaster managers can use hazard maps 
for risk identification and assessment.  

Traditionally, the maps used to deal with emergencies and support 
decision making were primarily created by using static GIS data, 
such as topography, land use, demographic and socioeconomic 
conditions (e.g., poverty and education), statistical information on 
damage and loss caused by historical disasters, and information 
about existing infrastructure (e.g., housing conditions, public 
facilities) [1]. Depending on the specific disaster type, other 
relevant data may be incorporated. For example, for weather-
induced disaster, hydrological information and meteoroidal data 
are also used [2, 3]. However, the information of real-time 
damage and resource demand (e.g., water, food, and medicine), 
which can augment our understanding of the overall disaster 
situation, and facilitate the decision-making towards a better 
response strategy, cannot be effectively integrated since such 
information is difficult to obtain due to limitations in data 
acquisition and techniques in processing the data efficiently in 
near real time. 

With the massive popularity of social networks and their real time 
production of data, social media streams have emerged as a new 
source for disaster management. For instance, social media 
networks have even become widely used as an intelligent “geo-
sensor” network to detect and monitor extreme events or disasters 
such as earthquakes [4, 5]. Such intelligent sensor webs are useful 
for operations such as event detection, where timely information 
is most valuable and hard to obtain [6, 7]. Additionally, it has 
been widely acknowledged that Humanitarian Assistance and 
Disaster Relief (HA/DR) responders can gain valuable insights 
and situational awareness by monitoring social media-based feeds 
from which tactical, actionable data can be mined from text [8-
12]. 

While these novel streams offer new opportunities during 
emergencies, using traditional GIS techniques it is impractical, if 
not impossible, to handle such massive heterogeneous, real-time 
datasets. This limitation is mainly due to traditional GIS tools and 
systems being designed and implemented to work on standalone 
computers to process small-sized and static data. There are a 
number of limitations associated with this approach: the data 
storage is normally constrained; the data model and management 
are formatted yet incapable of managing unstructured data and 
inflexible for expansion; the data processing is pronounced yet its 
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capabilities are restricted to spatial components (locations) and 
associated attributes of geographic information, but limited to 
handling text messages. Specially, social media data pose several 
grand challenges when integrated with a traditional GIS system: 

•   Volume: Social media are streams of data often massive in 
volume. The volume and data rate leave a conundrum for 
traditional GIS on standalone machines. For example, just 
ingesting global daily tweets for a single year generates such 
a magnitude of data that is well beyond the capability of any 
mainstream GIS on a commercial standalone computer [13]. 
Analyzing this volume of data is not feasible for traditional 
GIS because of the computational requirements involved that 
go beyond what a typical workstation can support. 

•   Velocity: Social media data are generated dynamically and 
continuously. Users of social media services at different 
locations frequently update their status and post messages 
and pictures online, some of which can be shared (e.g., 
retweeted on the Twitter) exponentially. These real-time 
data, complemented with official and authoritative data 
sources, are valuable and require an adaptable system to 
dynamically adjust to the different data rates, including peaks 
during which the volume of the data can greatly exceed the 
normal traffic [14]. A traditional GIS, however, are not 
capable to adjust to such dynamic processes. It simply lacks 
the scalable computing infrastructures to handle streaming 
social media data. As a consequence, the GIS framework 
must be extended to cope with this dynamic information 
flow.  

•   Variety: Compared to well-structured data formats in 
traditional GIS, such as vector data and raster data, social 
media data are often produced in unstructured forms. Some 
posts can be extremely short in content and small in size 
while others may contain images, videos, and external links 
that are rich in content and relatively large in size [15]. Given 
this asymmetry of data flow, conventional GIS data 
structures and storage systems can be inefficient in storing 
the data, causing a waste of resources and potentially slowing 
down data retrieval. In addition, to study trends and 
processes hidden in these social media streams, additional 
data mining processes are often necessary because the text 
include lexicon and linguistic patterns that are fragmented 
and unstructured. Traditional GIS is unable to provide the 
analytical capability to query and process spatiotemporal 
events and understand their patterns. Furthermore, unlike the 
conventional GIS data that are well organized and presented 
at certain government websites (e.g., Census1), social media 
data often require advanced processing for data collection, 
such as designated accesses at multiple time points and 
regions via provided application programming interfaces 
(APIs) [16]. Issues of uncertainty and noise in accessing the 
data further hinder the collection process.  

In the geospatial fields, progress has been made to archive, 
manage, index, process and analyze the unstructured social media 
data, such as messages from Twitter and Google+, check-in’s 
from Foursquare, videos from YouTube, and photos from Flickr, 
in a data driven framework for different geospatial applications 
[17, 18]. In these studies, each social media data entry is treated as 
a spatiotemporal (ST) point, and traditional spatial data analysis 
algorithms (e.g., spatial clustering), statistics, and geovisualization 
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methods are applied to understand the patterns of these massive 
ST points. Simple text processing analysis, such as using text 
match based approach and sentiment analysis, may be applied on 
the text content to filter out non-relevant messages and to 
understand public behavior and perceptions towards a specific 
event [17].  However, most of the time, text components of social 
media are mostly ignored or under studied. In fact, much useful 
information in social networks such as Twitter is textual as people 
post text messages related to damage, offering help, requesting 
services, fundraising or donation. From the text, “actionable data” 
can be harvested and extracted to establish situational awareness 
or produce a crisis map [7, 12]. As a result, many computer and 
information scientists are attempting to extract information from 
disaster-related messages for emergency coordination and disaster 
relief using machine learning techniques [8-12]. However, in 
these studies, locations of social media data are not well 
considered to establish geographic situational awareness (GSA).  

According to Huang and Xiao (2005), GSA is defined as knowing 
what is happening in the ambient space during an event. Users 
with location services enabled on smart mobile devices can post 
content (e.g., text messages or photos) with geo-tags (locations), 
where an event occurred. The locations along with the place 
names mentioned in the content text are then used to identify the 
areas of damaged infrastructure, affected people, evacuation 
zones, and the communities who are in need of aid resources. 
Therefore, in order to establish GSA, both content and locations 
of social media data must be considered.  

Faced with this challenge, this paper aims to present a CyberGIS 
based framework that can synthesize multi-sources data, spatial 
data mining, text mining, geovisualization, big data management, 
and distributed computing technologies in an integrated 
environment to support disaster management and analysis. This 
proposed framework uses Apache Hive as a scalable distributed 
storage to ingest and archive massive amounts of social media 
data. Due to its key characteristics of reliability, flexibility, cost, 
and scalability, Hadoop is employed to process and analyze 
archived social media data to make it usable. Apache Mahout, an 
open-source library that implements scalable machine learning 
algorithms, is used as the underlying library to support big data 
analytics. The proposed solution is very fast because of its 
seamless integration with other popular open-source Apache 
libraries, such as Hadoop and Lucene (a high-performance, full-
featured text search engine library). Mahout has been widely used 
to perform various text mining tasks, such as grouping together 
similar documents by using various clustering algorithms [12]. 
Various geovisual tools are also developed and presented in a web 
interface that allows users to customize analysis and view multi-
sourced data in different types of maps and plots for disaster 
management.  

 
2.   A CYBERGIS FRAMEWORK 
Figure 1 shows the developed framework to integrate multi-
sourced data for disaster management. Overall, there are three 
steps or modules in our framework, including data collection, data 
process, and data geovisual analysis. Below we elaborate each 
module in detail.  
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Figure 1. Design of the CyberGIS framework for disaster 

management using multi-sourced data 

2.1   Data collection 
Twitter publishes real-time tweet stream through open APIs. By 
registering an account and applying for access keys, third parties 
can receive tweets in real-time. In general, Twitter allows to 
collect about 1% of the daily available tweets. As Twitter only 
allows users limited access to historical data, tweets have to be 
archived in a local database. Therefore, the proposed approach 
starts with archiving data to be processed for future analysis. For 
the data collection, a crawler based on Twitter4j2 is implemented 
to collect geo-tagged tweets.  
Within this framework, an unstructured database, Apache Hive3 is 
used to store the datasets. MapReduced based systems have 
emerged as a new computing paradigm for massively parallel data 
process [19]. Hadoop, the most widely used implementation of 
MapReduce, has been successfully applied in large-scale Internet 
services to support big data analytics. Hive, a data warehouse 
package built on top of Hadoop, facilitates querying and 
managing large datasets residing in distributed storage [20]. Hive 
supports queries expressed in a SQL-like declarative language, 
called HiveQL, which are implemented as map-reduce jobs that 
are executed using Hadoop. For many years, traditional SQL 
databases (such as Oracle, MySQL, PostgreSQL, SQLite, and MS 
SQL Server) have been used for storing different types of data. 
However, Hive is currently being widely adopted as a scalable 
data warehousing solution by many enterprises, including 
Facebook. 

By using Hive as the underlying database system for social media 
storage and management, the framework can leverage scalable 
and distributed file systems, and Hadoop parallel computing 
paradigm. Within Hive, all tables are stored as Hadoop distributed 
file system (HDFS) files in different formats. Using such 
databases, data are archived and duplicated in across multiple 
servers with each server containing a subset of the accumulated 
data. As a result, parallel computing can be applied to query and 
process data from each server independently. Text files, for 
example, are stored in the TextInputFormat and binary files can 
be stored as SquenceFileInputFormat. However, Hive does not 
impose any restrictions on the type of file input format for the data 
are stored in [20].  

In the proposed framework, RCFileInputFormat, designed for 
clusters with MapReduce and a step up over standard text files, is 
used as the storage format that can be defined while creating the 
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table for storing social media data. RCFileInputFormat stores the 
data in a column oriented manner. Such an organization can 
greatly speed up queries that do not access all the columns of the 
table [20]. For each tweet entry harvested from Twitter, all 
metadata about the tweet message are stored, such as the user 
name, time stamp and location when the tweet was created, source 
generating the tweet, text content, hashtags, etc. However, only 
one or several fields are queried and retrieved for a specific 
application. Therefore, RCFileInputFormat is a good storage 
option for this particular application. Because searching billions 
of social media records is time consuming, indices are created  for 
several commonly queried fields, such as text content, hashtags, 
and time information. 

While traditional SQL databases cannot efficiently store and 
manage massive social media datasets, they provide robust spatial 
query and operation support (e.g., retrieving data within a specific 
boundary). Therefore, other types of data, such as socioecomoic 
data downloaded from Census, have relatively structured 
information, and are organized in a PostgreSQL/PostGIS 
database, an open-source spatial database solution allowing 
storage and query of geographic objects.  

2.2   Data process and service 
Data process and service component retrieves data from the 
databases, and performs necessary data process, analytical, or 
mining functions to generate response results requested from the 
web interface. This module provides basic GIS data processing 
and analytical functions, such as geospatial data reprojection, data 
format conversion, and spatial clustering.  

Additionally, this module also provides different spatial data and 
text mining capabilities. To achieve high performance, Hadoop 
platform, a widely used scalable distributed computing 
environment, is used in this framework to process social media 
data. Specially, Mahout, an open source machine-learning 
package for Hadoop, is used as underlying library for text mining. 
Many classic algorithms for data mining, such as naïve Bayes, 
Latent Dirichlet Allocation (LDA) [21], and logistic regression 
are implemented as MapReduce jobs. LDA is one of most crucial 
algorithm used in this framework to discover the emerging “hot 
topics” that are discussed over the social media.  

First introduced by Blei et al. (2003), LDA is an example of 
a topic model for analyzing a large number of unlabeled data. 
LDA can be used to cluster words into “topics” and documents 
into mixtures of “topics” by uncovering the hidden thematic 
structure (or “topics”) in a large collection of documents. In LDA, 
each document is represented as a probability distribution of 
various topics, which are in turn distributions over words. Each 
word could belong to one or more topics.  

As each tweet is limited to 140 characters and it is highly 
unstructured, including a large number of abbreviations and 
hashtags, unspaced phrases prefixed with the sign “#”. Any user 
who wants to create a concept category and to discuss and share 
specific information about a subject can create a hashtag. A 
Hashtag is an identifier unique to Twitter and is often used to 
search for tweets that have a common topic. Therefore, in our 
study, each tweet is a document and only hashtags are extracted as 
words to represent the document while modeling the tweeting 
topics with LDA. 

An advantage using Mahout is that the LDA algorithm is 
implemented as a MapReduce job, which can be run in a large 
Hadoop clusters. Therefore, we can leverage Hadoop clusters 



(Figure 1) to speed up the process of topic detection by adding 
more nodes into the computation. After running LDA model, an 
output of the computed topics with each topic being represented 
as a set of words (hashtags) with certain probability is produced. 

2.3   Data geovisual analysis 
The Web interface provides an online graphic user interface with 
geovisual analytical tools to customize analysis and view data in 
various maps and plots. Users from different communities can 
request the data search, analysis, visualization, or animation 
services through the web interface. Geovisual analytical tools 
normally contain multiple interactive tools, dynamic graphs and 
live-linked views of data representation [22, 23]. All the functions 
on the web interface are implemented using dojo framework4, 
HTML5 and JavaScript. 

Using the interface, public users can search against the resource 
catalog to explore and manipulate multi-sourced data for disaster 
management and analysis. Within this framework, two key 
capabilities are included through the data geovisualization and 
analysis component, including 1) tracking real-time events, and 2) 
analyzing historic events, which are discussed in details and 
demonstrated in Section 3.  

3.   DEMONSTRATION 
A system prototype is implemented in JAVA based on the JAVA 
Server Page (JSP) and R to automatically harvest and analyze 
various types of data. Several open-sources are used for the 
prototype development. Due to the advanced capabilities in 
dynamically visualizing multidimensional geographical data 
online, Google Map is selected for displaying maps of multi-
sourced data at the client side. 

3.1   Case study and data 
Hurricane Sandy, which made landfall in the North-Eastern US on 
29 October 2012, is selected as a case study. Sandy began as a 
tropical wave in the Caribbean on October 19th. It quickly 
developed, becoming a tropical depression and then a tropical 
storm. On October 28th, President Obama signed emergency 
declarations for several states expected to be impacted by Sandy, 
allowing them to request federal aid and make additional 
preparations in advance of the storm. On October 29th, Sandy 
made landfall in the United States (U.S.), striking near Atlantic 
City, New Jersey, with winds of 80 mph. It affected 24 states in 
U.S., including the entire eastern seaboard 
from Florida to Maine and west across the Appalachian 
Mountains to Michigan and Wisconsin, with particularly severe 
damage in New Jersey and New York. 

For section 3.2, geo-tagged messages posted on Twitter during 
Oct 10th, 2012 and Nov 27th, 2012, from Gnip (http://gnip.com/) 
are used, and the downtown New York area is chosen as the study 
region. A total of 1,763,141 geo-tagged tweets were collected by 
sending a geographic query with the boundary of the selected 
study area. After filtering out non-relevant tweets using a set of 
predefined hashtags and keywords, 38,224 tweets are included for 
the next step analysis [12]. The tweets crawled using Twitter 
stream API between Oct 27th, 2012 to Nov 07th, 2012 are used for 
the demonstration of Section 3.3.  
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3.2   Historical event analysis 
The developed web portal has several functions to support the 
analysis of the historical events temporally and spatially by 
integrating social media with other socioeconomic and disaster 
relevant data (Figure 2). The left panel allows users to analyze a 
specific event by selecting the available events stored in the 
database, and configuring spatial and temporal scopes. The middle 
panel shows different types of data. Instead of using one map as 
traditional desktop and online analytical tools, maps can be 
attached to multiple widows. Users can compare different 
variables extracted from different data sources and types (e.g., 
socioeconomic, historic damage records, climate change, social 
media, or remote sensing) in parallel to acquire knowledge from 
the spatial patterns. The map views presented are always focused 
on the same area. Comparing them, users can learn, for example, 
underlying factors contribute to the generation of tweets by 
linking social media data with socioeconomic data in different 
map windows.  
 

 

Figure 2. Tweet density versus household income 
As an example, Figure 2 middle panel shows the spatial 
distribution of tweet frequency (upper window) and estimated 
median house value in each NYC Census tracts (lower window). 
The median household income in the study area has a unimodal 
distribution, showing a great diversity ranging from less than 
$10,000 to $250,000 (Figure 3 left). The average median 
household income is about $56,000. Most tracts have a household 
income between $30,000 and $110,000, very few tracts have 
household income more than $150,000. These wealthy areas are 
mainly in Manhattan along the Hudson River (Figure 2 middle 
panel lower window).  
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Figure 3. Histograms showing the unimodal distribution of the 
frequency of NYC census tracts for median house value (left) 

and median age (right).  
Besides displaying maps of various variables, the system is able to 
return the statistical results as statistical plots to the client. By 
interactively manipulating the data, dynamic statistical plots with 
maps are directly linked to the knowledge discovery process. 
Figure 2 (right panel), for example, shows how people’s 
contribution of relevant tweets differs as their wealth changes. 
The result is also a unimodal distribution. When household 



income is lower than around $175,000, people’s contribution to 
hurricane-related tweets increase significantly as income goes up. 
After that peak point, the tweet frequency drops dramatically. 
This pattern indicates that wealthy people tend to more actively 
participate the online discussion of the disaster and share useful 
information about the disaster situation in the online community. 
But for the top very wealthy people (income above $175,000), this 
pattern is disrupted, and there seem to be a decreased interested in 
this process. The analysis result confirms with the findings by 
Xiao et al. (2015) using statistics models to examine the spatial 
heterogeneity in the generation of tweets after a major disaster 
[24].  

In additional to comparing tweet density with median household 
income, we can also understand how age may impact the 
generation of useful tweets that may contribute to situational 
awareness during a disaster by analyzing the correlation between 
age and tweet frequency in each Census tract (Figure 4).  

 
Figure 4. Tweet density versus media age 

 
3.3   Real-time event tracking 
The system supports automatic detection of the potential events 
by integrating topic modeling and spatial clustering algorithms. 
Figure 5 (left panel) shows that disaster managers or public users 
can set up relevant parameters for detecting potential hashtags that 
are associated with a specific event. One of the critical parameters 
is “track interval”, which indicates the time span for which tweets 
are monitored and used for detection. For example, if the interval 
is set to one hour, then tweets posted in the past one hour will be 
used as the input for the LDA modeling (Section 3.1). 

 

Figure 5. Hashtag detection and real-time event Tracking (For 
better display purpose, the hashtag sign “#” is removed) 

The system consistently calculates the frequency of each hashtag 
with our developed program, and run the LDA algorithm as a 
MapReduce job, which can discover topics discussed over the 
Twitter at the predefined tracking interval. For each hashtag (e.g., 
Sandy), the system will find the topic that it belongs, and 
associated words (e.g., HurricaneSandy) in the topic, which are 
hashags that are posted together with the hashtag, can be detected. 
This information is automatically stored in the database and can 

be accessed and displayed through the web interface (Figure 5 
middle panel). For this demonstration purpose, the data between 
“2012-10-27 22:33:27”, when the first geo-tagged tweet including 
the hashtag “#sandy” in the message was posted on Twitter, and 
“2012-10-27 23:59:59” were used. Within this period, it was 
detected that there are nine hashtags that have the frequency more 
than 100. It can be observed that several topics, such as SAT test 
and studies (using the hashtags #gottaacemysatexam,and 
#satstudytime), Halloween parties (using the hashtag #halloween) 
also emerged in the Twitter.  

For each topic, the top 10 associated hashtags produced by LDA 
modeling are displayed in the third column of the table (Figure 5 
middle panel). The model output is intuitive, and it can be seen 
that SAT test hashtag (#gottaacemysatexam) is mostly associated 
with relevant hashags, such as #excited (about the results), or 
#waiting (for the results) etc. Results also show that tweets related 
to Hurricane Sandy and associated  with the hashtag “#Sandy” 
have also emerged. After discovering these “hot topics” through 
the LDA model, the words (hashtags) in each topic are used to 
match a predefined list of keywords related to natural hazards, 
such as “hurricane”, “storm”, “quake”.. If a match is detected, an 
alert is posted by the system to provide early warnings about a 
potential disaster. Since the both hashtags “#Sandy” and 
“#frankenstorm” are associated with the word “storm”, which 
itself is one of the predefined keywords related to natural hazards,  
the system will post a warning alert and will start monitoring and 
track all relevant tweets.  

Through the user interface, users can also view the spatial 
distribution of the tweets (Figure 5, right panel) with a specific 
hashtag included (Figure 5 middle panel). If the hashtag is 
relevant to a disaster, then users can click “Track” button, the 
system will then continually monitor the streaming tweets. If it 
turns out to be a false alarm after monitoring for a while, users can 
click “UnTrack” button, and a revoke process will trigger the 
system to remove the monitoring task.  

4.   CONCLUSION AND FUTURE WORK 
In this study, a CyberGIS framework is proposed to synthesize 
multi-sourced data, including stream data from social media for 
disaster management. To manage massive social media data, 
Hadoop Hive is used as the scalable storage solution. Meanwhile, 
to address big data challenges, Hadoop platform is used as a 
scalable distributed computing environment to process social 
media data. Mahout is leveraged to support big data analytics. 
Using such interactive and high performance framework that can 
automatically synthesize multi-sourced data to produce different 
types of maps and plots, effective strategies can be developed to 
mitigate the potential effects, respond and coordinate efficiently 
and effectively during disasters. 

With the rise of social media data in various volume and types, it 
is always a challenge to seamlessly integrate the data and analyze 
them to produce meaningful results that can be used in real time 
for situation awareness. The presented methodology attempts to 
pave the way for a systematic integration of new data streams, 
along with the new computing paradigms, e.g., GPU computing 
[25], and cloud computing [26-28] to support effective big data 
management. This paper shows that a CyberGIS framework is 
effective for disaster mapping and real-time event tracking. The 
proposed framework has great potential to handle multi-sourced 
data streams for a variety of application that go beyond disaster 
coordination and relief. 
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