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ABSTRACT
A risk bidding methodology is proposed to help prosumers
formulating optimal quantity-price bids for the day-ahead
energy market. A prosumer is the manager of a Low
Voltage (LV) Micro-Grid (MG), connected to the main
electric grid, where generators are paired with renewable
energy sources (RES). To present the optimal bidding in the
wholesale electricity market, the prosumers need to resolve
a short-term management problem and need to identify
all influencing variables (i.e. energy exchange, internal
production, level of storage, Photovoltaic power plants
(PV)). They also have to take into account the uncertainty in
RES energy production to evaluate different risks associated
with their tolerance preferences. A heterogenous MG which
pairs traditional thermal and electrical generators with a
PV power production is simulated. An economic model
based on genetic algorithms is proposed to formulate the
optimal bidding. Although in literature it is possible to find
similar decision support models, one of the main original
contributions of this work is to estimate the RES input
of the proposed model with Analogs Ensemble (AnEn)
approach, which is used here to provide day-ahead PV
energy forecasting. The results of the model are analyzed
evaluating the risk associated with the different prosumer’s
choices by the expected utility theory. The analyzed
case study uses on residential MG and different prosumer
risk tolerances (adverse, neutral and incline). Results are
shown to demonstrate the effectiveness of the proposed
methodology.
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1. INTRODUCTION
Recently power systems have been undergoing radical
changes to satisfy an increasing energy demand. The Micro-
Grids (MGs) concept is one of the proposed solutions to cope
with these new challenges. It is based on a cluster of time-
varying loads and Distributed Energy Sources (DERs), a
portion of which includes renewable energy sources (RES).
MGs operate as single controllable system that provide
power, and optionally heat, allowing bidirectional power flow
to and from the main Medium Voltage (MV) power grid [37,
36, 20, 28, 11, 5].

Several investigators have analyzed the role played by these
new power systems into the deregulated electricity market,
their contribution to energy price reduction and increase
reliability of the system, an their impact on the best strategy
devising to minimize operating cost [31, 15, 39]. A prosumer
is the manager of a Low Voltage (LV) Micro-Grid (MG),
connected to the main electric grid, where generators are
paired with renewable energy sources (RES).This study
presents [38, 41].

One of the main innovations of this work is the use of
an Analog Ensemble (AnEn) approach to quantify the
uncertainty associated with the electricity production from
RES [7, 2]. AnEn uses a single deterministic meteorological
forecast, and a historical series of past forecasts and
associated energy production, to generate PV power
probabilistic predictions. It selects the historical forecasts
most similar to the current prediction, and generates
probabilistic forecasts of power produced by aggregating
the observed historical energy productions associated with
the selected historical forecasts. The main advantages of
the AnEn method are its ability to provide reliable and
bias-calibrated forecasts, and its computationally scalable
algorithm that is well suited for parallel processing.



While it is possible to generate a justifiable measure of
uncertainty through various methods, using it to make
decisions and participate in a deregulated energy market is
an open area of research [1]. Basing decisions on a reliable
quantification of uncertainty can lead to energy bids that
can maximize profits and minimize losses. Moreover, the
prosumer can play a crucial role to adjust the elastic demand
of consumers that are not able to adjust their demand
to varying energy prices.In this work only the uncertainty
associated with the RES power generation is considered.

After a description of the methodology applied (Section 2),
in which the current deregulated electricity market system
and its rules are mentioned, the paper is articulated as
follow. In Section 3 the optimal bidding model is shown
and discussed; in Section 4 a case study is implemented. In
it, the operation of a MG consisting in a PV system and six
different power plants, is analyzed. It is assumed that the
MG works in grid-connected mode and that the electrical
loads and prices are known. The proposed methodology is
implemented in MATLAB, and numerical results show the
feasibility and the effectiveness of the proposed approach.

2. METHODOLOGY
A classic scheduling problem can be divided it into three
sequential, interrelated sub-problems: Economic Dispatch
(ED), Unit Commitment (UC) [42, 30, 33], and Optimal
Power Flow (OPF) [24, 4, 10]. The proposed methodology
focuses on solving the first sub-problem (ED) and it
consists in the development of a bidding algorithm for MGs
(Figure 1).

To determine the bidding, the first sub-problem is solved
for a set of price profiles, ranging between a minimum
and a maximum. Assuming price and load demands are
known using historical data, the prosumer defines the
optimal hourly bidding strategy, the interchange with the LV
distribution network, the production of each DER unit, and
the amount of energy charged/discharged from the storage
units, when present [40, 35, 29, 17, 6].

The proposed approach is organized in the following steps.
First the uncertainty of PV energy production is estimated
being the main limiting factor for the participation of a MG
in the day-ahead market [3]. The AnEn methodology is used
to estimate this uncertainty. Ensemble prediction systems
in general represent discrete samples of a finite number of
the forecast probability density function (pdf). Probability
forecasts may be generated by assuming the distribution of
ensemble members predicting an event as an estimate of
the probability of that event occurring. The risk associated
with the uncertainty of variable power production is then
analyzed to understand the potential impact of different sub-
optimal choices. There are different ways to evaluate the risk
associated with a decision [21]. In this work expected utility
theory is used [18, 27]. This theory evaluates the choices
privileging outcomes with the highest expected utility rather
than with the highest expected value.

The expected utility theory takes into account the attitude
of individuals with regard to risk (aversion, neutrality or
propensity to the risk) to make decisions that minimize
negative returns [22]. According to this approach, for each
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Figure 1: Temporal sequence of the short-term
determinations

possible outcome x a certain value is assigned on the basis of
the individual’s utility function u(x). The expected utility
is obtained as the average weighted utilities associated with
each possible outcome, where each weight is determined by
the respective outcome probability. The final step is to use
the results from the previous two steps to determine the
optimal bids to present in the day-ahead market [25, 32, 16,
26, 23]. Depending on the rules of the market, each offer
may consist of a generic curve or of a price-quantity pair
[12].

It is worth noting that the bids may be unique (only a
certain quantity at a certain price) or multiple (more price-
quantity pairs). Therefore, multiple bids are characterized
by a series of steps that identify a bidding curve that is
piecewise constant, monotonically non-decreasing or non-
increasing, depending on whether they are offers to buy or
to sell, respectively (Figure 2). The maximum number of
price-quantity offers is defined by the rules of the market.
For example, in Spain, 25 pairs can be offered, whereas only
four can be offered in Italy.

3. THE OPTIMAL BIDDING MODEL
Let ΩC be the set of CHP plants, ΩB be the set of heat
production plants, and ΩG be the set of power plants that
only produce electricity, and ΩDth and ΩDe be the sets
of total thermal and electrical loads, respectively. PCet,j

indicates the power of the jth unit of CHP generation
production at the tth hour; PGt,j is the power of the jth unit

of only electricity production at the tth hour and PBt,j is the

thermal power of the jth heat production at the tth hour;
Pgridt is the power interchange with the MV distribution
network at the tth hour. The latter is assumed positive if
is bought from the utility grid and negative if is sold to
the utility grid. Finally, ρt

e is the energy price at the tth

hour, which is assumed equal for both buying and selling.
Then, the optimization problem consists of minimizing the
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Figure 2: Multiple quantity-price bidding strategy for a MG when selling electricity (left) and when buying
electricity (right).

following function under a set of technical and operational
constraints:

24∑
t=1

{

 ∑
j∈ΩC

CCj

(
PCet,j

)
+
∑

j∈ΩB

CBj

(
PBt,j

)
+


∑

j∈ΩG

CGj

(
PGt,j

)
+ ρetPgridt +

20∑
p=1

ξρet (xt − x̄pt )} (1)

where ξ is a weight that takes into account the case in
which the difference (xt − x̄pt ) is positive (over production)
or negative (under production), which is only caused by PV
systems. The last term of the Equation (1) represents the
difference between the expected value of the power produced
by PV plants and the probabilistic value of the analogs. The
variability, associated with the non deterministic production
from PV sources, introduces non-linearities in the model.
The optimization problem shown in Equation (1) is solved
using an evolutionary algorithm [13].

ξ =

{
gup(xt − x̄pt ), if x > x̄pt .

gdown(xt − x̄pt ), if x < x̄pt .
(2)

The functions gup and gdown are built as traditional
functions of demand and supply in the market. Lets,
moreover, PDtht,j

and PDet,j
be the values of jth load,

thermal and electric, respectively, at tth hour, having
assumed that all of the loads aren not controllable.
The energy constraints can thus be expressed as balance
constraints:

∑
j∈ΩC

PCet,j

ηj
+
∑

j∈ΩB

PBt,j =
∑

j∈ΩDth

PDtht,j
t = (1, ..., 24)

∑
j∈ΩC

PCet,j
+
∑

j∈ΩG

PGt,j + Pgridt + PVt =
∑

j∈ΩDe

PDet,j

(3)

Finally, the following inequality constraints must be
considered:

PCet,j

m ≤ PCet,j
≤ PCet,j

M (t = 1, .., 24) (4)

PBt,j

m ≤ PBt,j ≤ PBt,j

M (t = 1, .., 24) (5)

PGt,j

m ≤ PGt,j ≤ PGt,j

M (t = 1, .., 24) (6)

−Pgridt,j
M ≤ Pgridt,j ≤ Pgridt,j

M (t = 1, .., 24) (7)

4. CASE STUDY
The proposed model is tested on a residential MG [19, 8,
14] with electrical loads characteristic of a summer day (the
third Wednesday of June), as shown in Figure 2. The
electrical load demand is the aggregate of the loads of six
different entities, namely a hotel, a sport center, a hospital,
a manufacturing plant, a supermarket, and several offices
[43, 44, 34, 9].

To successfully deploy a MG it is necessary to integrate
different generation sources. In this simulation there are
six thermoelectric units, 2 traditional power plants and
4 cogenerators. There are also a 400-kW PV and an
independent boiler for the generation of thermal energy.



Their technical and economic characteristics are reported
in Table 1.

Table 1: Technical and economic characteristics of
the plants

Power Plant Pj
m Pj

M γGj βGj αGj

XA: 400 kW 80 400 1054 21.63 0.0005
XB: 400 kW 80 400 1054 9.87 0.0025
YA: 60 kW 10 60 800 45.81 0.2222
YB: 60 kW 10 60 461 51.60 0.1000
ZA: 180 kW 36 180 892 34.40 0.0021
ZB: 180 kW 36 180 892 25.78 0.0420
Boiler 0 4500 63.0

Table 2: Minimum and maximum spot prices and
electrical loads averaged over 12 months for a 24
hours period.

Hour Min Price (e/MWh) Max Price (e/MWh) Load (kW)

1 30.7 102.6 440
2 25.7 96.6 440
3 21.4 92.0 440
4 17.3 87.0 440
5 14.9 85.7 440
6 16.6 86.8 740
7 16.1 85.5 1200
8 16.6 145.1 1905
9 26.4 188.8 2345
10 32.7 207.0 2405
11 32.2 207.1 2420
12 29.5 206.5 2440
13 27.2 143.9 2470
14 15.2 121.9 2465
15 12.1 144.5 2450
16 12.8 163.7 2395
17 20.2 186.6 2360
18 36.5 196.6 2335
19 56.9 222.3 1695
20 69.9 211.9 1425
21 64.1 324.2 1295
22 60.0 156.3 955
23 52.0 144.4 530
24 39.1 101.7 425

Spot prices are obtained using historical data for 12
consecutive months of the Italian electricity market [12]. We
assume that there are three different prices for each hour
(peak, mean and low price). The energy price is one of
the input for the simulation, along with the probabilistic
forecasts for PV generation. The forecast trends of power
generation from the PV system are reported in Figure 3.
Each panel shows the boxplots of the forecast for the power
generated by the PV system and computed by the AnEn
algorithm. It includes three curves resulting from the genetic
algorithm optimization, and they quantify the amount of PV
electricity included in the price-quantity bidding. The three
curves differ depending on the prosumer adversity to risk:
solid (high risk), dotted (medium risk) dashed (low risk).
The three different risk taking strategies are affected by the
energy price.

In Figure 4 the grid exchange (blue curve), the power
produced by traditional power plants (green curve),and PV
power (red curve) are compared with the electrical load
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Figure 3: PV power production as a function of risk
adversity and price: high (top), medium (center),
low (bottom). The boxplots show the AnEn PV
power forecasts, and the different curves indicate the
quantity of PV electricity included in the bidding
depending on the prosumer adversity to risk.



profile (sky blue curve) are reported for difference prices
and risk. In fact, the prosumer can change the amount of
energy that he needs and the power that he can produce,
with the PV system too. The last is function of the risk
that he wants to sustain.

Figure ?? shows the total power produced by the different
generators in comparison with the load, and that in
correspondence of maximum price the traditional power
generators work almost always at maximum, while in the
case of minimum price, they work at a minimum. In both
situations, when the generation exceeds the load, the MG
can sell the excess energy to the main electrical grid. On
the other hand, if the generation cannot satisfy the load
demand, energy is bought from the main electrical grid.

Figure 5 shows that optimal bidding curve at 08h00 for
different risk taking strategy of the prosumer. The vertical
axis shows the different electricity prices, and the horizontal
axis shows the different power produced. Most difference
between the three risk taking strategies can be seen for low
power values.

The curve of the total optimal production versus the spot
price coincides with the curve of the equivalent marginal
cost of production. This curve is obtained by summing for
the same price the marginal costs of the various units. For
each point of the bidding curve, the value of power offered
is equal to the difference between the total electrical load
requested and the total electrical power produced within
the MG. The hourly power offered in the day-ahead energy
market coincides with the power exchanged with the LV
distribution network, in correspondence to a specific market
price. The choice of the offer points must be made in such
a way that the hourly power exchanged is derived from the
marketâĂŹs outcomes.

The power corresponding to the vertical segment of the
bidding curve is the difference between the load and the
maximum production of the generating units compatible
with the constraints, including the energy produced by the
PV system for the specific hour. Usually, there is another
vertical segment of the bidding curve that corresponds to the
difference between the load and the minimum production of
the generating units, including the energy produced by the
PV system. This latter vertical segment appears only at low
energy prices. In the presented application, this segment
corresponds to prices that are outside the range considered
and therefore it is not shown in Figure ??.

5. CONCLUSIONS
In this paper a risk bidding strategy for the day-ahead
energy market is proposed to determine optimal economic
choices for the management of a MG. It is assumed that
the MG pairs a large number of distributed generators with
PV renewable energy resources, and that it is controlled
by a prosumer who manages distributed energy sources,
storage units, ICT elements, and loads involved in the grid.
The prosumer participates to the electricity market and
needs to determinate the optimal bidding. Results show
that PV energy production can be integrated with optimal
results in a residential MG if the prosumer strategy takes
into account the uncertainty linked to the energy output.
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Figure 4: Power production in function of risk
adversity and low price: red line (top) is the
electricity load, green line (medium) is the power
that buy/sell from the MV grid, blue line (bottom)
is the power generated. The last line is the total
amount of energy produced by PV plants.
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Furthermore, results show different optimal bids depending
on the risk adversity with respect to the uncertainty of PV
power production. The proposed methodology shows most
improvement during the hours when the price of electricity
is high and when the prosumer is inclined to take risks.

The participation of the MG in the ancillary services market
was not accounted for because it usually cannot satisfy
the requirements of minimum power. This means that,
regardless of the market structure, the prosumer must
consider the power to be offered in the day-ahead market
and the power to offer in the ancillary services market as
variables of the problem. However, when there are more
microgrid aggregations, and consequently, more prosumer
aggregations, the MG participation in this market must be
considered.

Further research will focus on the optimal offers to be
presented to the ancillary services market, coupled with
the energy market issues, since it is clear that the energy
market and auxiliary services market cannot be considered
separately.

Moreover, the uncertainty of the energy price and electricity
load were not objective of this work. Work in progress are
focus on the evaluation of the uncertainty related to them.
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[1] S. Alessandrini, F. Davò, S. Sperati, M. Benini, and

L. Delle Monache. Comparison of the economic impact
of different wind power forecast systems for producers.
Advances in Science and Research, 11:49–53, 2014.

[2] S. Alessandrini, L. Delle Monache, S. Sperati, and
G. Cervone. An analog ensemble for short-term
probabilistic solar power forecast. Applied energy,
157(1):95–110, 2015.

[3] A. Bracale, P. Caramia, A. Carpinelli, G.and Di Fazio,
and G. Ferruzzi. A bayesian method for short-term
probabilistic forecasting of photovoltaic generation in
smart grid operation and control. Energies,
6(1):733–747, Feb 2013.

[4] J. Carpentier. Optimal power flow. International
Journal of Electrical Power and Energy Systems,

1(1):3–15, 1979.

[5] V. Cosentino, S. Favuzza, G. Graditi, M. Ippolito,
F. Massaro, E. Sanseverino, and G. Zizzo. Transition
of a distribution system towards an active network.
part ii: Economical analysis of selected scenario. In
International Conference on Clean Electrical Power
(ICCEP), 2011, pages 15–20, June 2011.

[6] V. Cosentino, S. Favuzza, G. Graditi, M. G. Ippolito,
F. Massaro, E. R. Sanseverino, and G. Zizzo. Smart
renewable generation for an islanded system. technical
and economic issues of future scenarios. Energy,
39(1):196 – 204, 2012.

[7] L. Delle Monache, F. A. Eckel, D. L. Rife,
B. Nagarajan, and K. Searight. Probabilistic weather
prediction with an analog ensemble. Monthly Weather
Review, 141(10):3498–3516, 2013.

[8] M. Di Silvestre, G. Graditi, and E. Sanseverino. A
generalized framework for optimal sizing of distributed
energy resources in micro-grids using an
indicator-based swarm approach. IEEE Transactions
on Industrial Informatics, 10(1):152–162, Feb 2014.

[9] M. DiSomma, B. Yan, N. Bianco, G. Graditi, P. Luh,
L. Mongibello, and V. Naso. Operation optimization
of a distributed energy system considering energy
costs and exergy efficiency. Energy Conversion and
Management, 103:739 – 751, 2015.

[10] H. Dommel and W. Tinney. Optimal power flow
solutions. IEEE Transactions on Power Apparatus and
Systems, PAS 87(10):1866–1876, Oct 1968.

[11] S. Favuzza, G. Graditi, M. Ippolito, F. Massaro,
R. Musca, E. Sanseverino, and G. Zizzo. Transition of
a distribution system towards an active network. part
i: Preliminary design and scenario perspectives. In
International Conference on Clean Electrical Power
(ICCEP), 2011, pages 9–14, June 2011.

[12] GME. Testo Integrato della Disciplina del Mercato
Elettrico, 2012.

[13] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison Wesley,
1989.

[14] G. Graditi, M. Di Silvestre, R. Gallea, and
E. Riva Sanseverino. Heuristic-based shiftable loads
optimal management in smart micro-grids. IEEE
Transactions on Industrial Informatics, 11(1):271–280,
Feb 2015.

[15] S. Grijalva, M. Costley, and N. Ainsworth.
Prosumer-based control architecture for the future
electricity grid. In International Conference on Control
Applications CCA, volume 48, pages 43–48, Sept 2011.

[16] H. Habibollahzadeh and J. Bubenko. Application of
decomposition techniques to short-term operation
planning of hydrothermal power system. Power
Systems, IEEE Transactions on, 1(1):41–47, Feb 1986.

[17] M. Ippolito, M. D. Silvestre, E. R. Sanseverino,
G. Zizzo, and G. Graditi. Multi-objective optimized
management of electrical energy storage systems in an
islanded network with renewable energy sources under
different design scenarios. Energy, 64:648 – 662, 2014.

[18] D. Kahneman and A. Tversky. Prospect theory: An
analysis of decision under risk. Econometrica,
47:263–292, 1979.

[19] P. Kriett and M. Salani. Optimal control of a



residential microgrid. Energy, 42(1):321–330, 2012.

[20] B. Lasseter. Microgrids - distributed power generation.
In IEEE Power Engineering Society Winter Meeting.,
volume 1, pages 146–149, Jan 2001.

[21] T. Li, M. Shahidehpour, and Z. Li. Risk-constrained
bidding strategy with stochastic unit commitment.
IEEE Transactions onPower Systems, 22(1):449–458,
Feb 2007.

[22] P. Mongin. Expected utility theory. In a. n. d. U.
J.Davis, W.Hands, editor, Handbook of Economic
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