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ABSTRACT

Hurricane Sandy made landfall in one of the most populated
areas of the United States, and affected almost 8 million
people. The event provides a unique opportunity to study
power outages because of the data available and the large
impact to a densely populated area. Satellite nightlight
imagery of “before” and “after” the landfall of the hurricane is
used to quantify the light dimming caused by power outages.
Geolocated tweets filtered by keywords provide valuable
information on human activity at a high temporal and
spatial resolution during the event. Analysis of brightness
change in the satellite data and the density of power related
tweets points to a spatial relationship that identifies severely
impacted areas with human presence. Classification of
tweets through text analysis serves to further narrow the
information search to find the most relevant and reliable
content. Twitter data fused with satellite imagery identifies
power outage information at a street-level resolution that is
not achievable with satellite imagery alone.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining, spatial databases and GIS.

General Terms
Management, Human Factors, Verification.
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1. INTRODUCTION

Natural hazards are severe events that pose a threat to the
sustainment and survival of our society. Drastic population
growth, the emergence of megacities, and high risk facilities
such as high dams and nuclear power plants have increased
the risk posed by natural hazards at unprecedented levels
[15]. A single catastrophic event can claim thousands of
lives, cause billions of dollars of damage, trigger a global
economic depression, destroy natural landmarks, render a
large territory uninhabitable, and destabilize the military
and political balance in a region [10]. A number of costly
hurricanes have made landfall in populated areas of the
United States in recent years. In 2012, Hurricane Sandy hit
the Eastern seaboard of the United States in the densely
populated areas of New Jersey and New York. Major
economic consequences resulted through physical damage
from the hurricane, as well as from widespread power
outages.

During and after a natural disaster, situational awareness
is paramount to assess damage and determine appropriate
responses. Access to remote sensing data is critical during
disasters and has become the de-facto standard by providing
high resolution imagery for damage assessment and the
coordination of disaster relief operations [6, 9]. Satellites
often can produce high resolution imagery within hours of
major events [14, 2]. Satellite remote sensing data is used
to provide high spatial resolution imagery for areas of poor
accessibility or that are lacking in ground measurements [13].
Traditionally, geospatial information from remote sensing is
relied upon for decision-making. However, in the case of
a hurricane, it is difficult to use satellite imagery to assess
damage due to significant cloud coverage from the storm. In
addition, remote sensing only provides physical observations
of the Earth and can not directly assess the human condition



Figure 1:

EDT on 31 August 2012).

in that environment. Integration of other sources of spatially
rich crisis information on human activity and interests could
benefit emergency management.

Social media streams are a novel source of data being consid-
ered to provide actionable information during emergencies
[12, 3]. There is not widespread practitioner acceptance of
social media as a source of information for disaster man-
agement. Some relief organizations, such as the American
Red Cross, use social media to supplement authoritative in-
formation and official news reporting about events, as well
as, respond with information to those who need help [5].
The American Red Cross uses social media as an indicator
that a certain event is occurring at a certain place based on
keywords. The premise of many academic studies is that
geolocated social media provides spatially relevant informa-
tion.

However, social media data is generally aggregated and
rarely validated with another source. Even so, recent studies
purport there is valuable information in open data when
properly analyzed [5]. The integration of multiple forms
of data provides a collective check on the reliability of
the spatial information. Emergency responders commonly
have access to Geographical Information Systems (GIS) that
enable them to fuse spatial data from multiple sources, and
analyze spatial patterns that may be present. Geolocated
social media can provide a GIS with temporally and spatially
rich information on human activity and behavior that can be
added to existing datasets. Social media can be monitored to
identify spatial patterns of concern such as human activity
in evacuation zones and areas heavily damaged. Twitter
data has been used to supplement or replace imagery when
it is not available [12]. Social media for natural disasters
is increasingly used as a source of information from a

Nightlight image taken under normal
conditions about a month prior to landfall (2:11 am

Figure 2: Nightlight image taken two days after
Hurricane Sandy made landfall, during a short break
in cloud cover (2:52 am EDT on 1 November 2012).

population, especially in urban areas [3].

This study demonstrates the ability for spatial analysis in
GIS by the fusion of social media with nightlight remote
sensing imagery to detect power outages at a street-level
resolution. By comparing geolocated tweets of power outage
keywords to nightlight imagery of power outages we can form
a methodology for future social media usage when imagery
is not available. Identification of areas of severe impact
can be further validated by text analysis classification and
reviewing tweet content. The evaluation shows that real-
time social media event data during natural disasters can
supplement existing geospatial technologies with validated
information.

2. CASE STUDY

In 2012, Hurricane Sandy had a devastating effect on the
East coast of the United States causing a loss of lives,
properties, and damage to the environment. The storm
claimed a total 117 people in the United States: 53 in
New York state, 34 in New Jersey, 12 in Pennsylvania,
and 18 elsewhere in the United States [4]. Economic
costs were estimated in the billions; immediately following
Sandy, New Jersey estimated related costs at $36.8 billion
and New York state with estimates amounting to $41.9
billion. Environmental concerns of severe shoreline erosion
and inundation of toxic floodwaters have been observed [4].

Social media collection began on 26 October 2012, the day
some states declared a state of emergency as the category
1 hurricane approached with winds of 80 mph [4]. The
following day New York City ordered evacuation of low-
lying areas and closed public schools. Hurricane Sandy
approached the Eastern seaboard, with hurricane force
winds reaching 175 miles from the eye and cloud coverage



Figure 3: Image associated with a tweet taken from
the Empire State Building looking south shows the

entire lower end of Manhattan without power.

of a thousand miles. On 30 October 2012, there were
electrical outages of 7.9 million businesses and households in
15 states and the District of Colombia [4]. The storm caused
major infrastructural damage with high winds and flooding
which shutdown the New York Stock Exchange, the subway
system, and local airports. Power outages due to the landfall
of Hurricane Sandy doubled the rate of Internet network
outages in the United States and the recovery of networks
took four days before reaching normal levels [7]. Recovery
of infrastructure was relatively quick as only 600,000 people
were without electricity on 7 November 2012.

3. DATA

3.1 Remote Sensing

Two low-light images from the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) on NASA/NOAA’s Suomi National
Polar-orbiting Partnership (NPP) satellite were obtained,
the first about one month prior under normal conditions
(Figure 1) and the latter taken two days after landfall dur-
ing a short break in cloud cover (Figure 2). The “day-night
band” captures wavelengths from green to near-infrared and
measures the intensity of night light emissions [11].

Nightlight imagery is a reliable source of information on light
emissions only if clear imagery is available. In addition,
nightlight imagery is available at a low temporal resolution
due to the uniqueness of the satellite collection and its
orbit. Power outage maps can only be created by change
detection methods if there is previously collected imagery of
normal conditions. Changes in nightlight levels can occur
for many reasons, thus it is important to have temporally
comparable imagery to limit extraneous effects such as
seasonal variation.

In the case of Hurricane Sandy, ideal nightlight imagery
is available for the study area due to a chance break in
the otherwise heavy post-hurricane cloud cover. However,
in other cases, such as the Indian Blackout of 2012 [1],
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Figure 4: A change detection analysis between
the “before” and “after” satellite images shows
several areas of reduced brightness due to the power
outages.

clear nightlight imagery may not be available during the
power outage. It should be noted that even this otherwise
largely pristine imagery was taken days after the maximum
extent of the power outages, on 1 November 2012. Lack of
imagery at critical times demonstrates the need to augment
gaps in remote sensing data with other sources of spatial
information.

3.2 Social Media

Real-time collection of social media is the most reliable
method for gaining a sufficient quantity of streaming tweets
during an event. This study uses two Twitter datasets
that provide the most dense data for their spatial extents.
The first dataset contains about 70,000 geolocated tweets
collected by the Pennsylvania State University during the
event from 26 October 2012 to 12 November 2012 for an area
that encompasses New York City and most of New Jersey
with keywords such as “hurricane”, “Sandy”, or “storm”.
Geolocated tweets related to power outages were identified
by mining the text of the tweets for keywords such as
“power”; “blackout”; “electric”, “lights”, and “outage”. Power
outage related tweets can indicate where the communication
of power outages is the most dense given the quantity of
tweets in an area.

The second Twitter dataset has about 35,000 geotagged
tweets that contain disaster relevant information collected
by the University of Wisconsin-Madison for the same
temporal period, but only focused on the extent of New
York City. The geolocated Twitter data were classified
into different categories (or themes) during various disaster
phases using machine learning techniques [8]. Specifically,
17 sub-categories were created in the four major emergency
management categories of preparedness, impact, response,
and recovery. Additionally, the “other” category is defined to
describe tweets that include the predefined disaster relevant
hashtags and keywords in the text but do not contribute to
situational awareness. The category of “utilities” includes
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Figure 5: Kernel density raster of tweets in study
area using power outage keywords.

Figure 6: Highlights areas of overlap from high
proportion of power-tagged tweets and remotely-
sensed power outages.

situational awareness tweets that report information about
power outages, in addition to, the failure or disaster impact
on Internet, cable, Wi-Fi, and heating. All of these topics
included in the “utilities” category are directly related to
the impact of power outage which broadens the selection of
relevant tweets in New York City.

The first dataset is used to study the overall region of
New York and New Jersey in order to identify regions of
spatial correlation between the Twitter dataset and satellite
imagery. The second dataset is used to correlate the data
at a street-level resolution in lower Manhattan and check
the classification of topic categories for “utilities” that refer
to power outages. This second dataset includes several
tweets with links to photos which are tagged with power
outage related keywords. Figure 3 shows a photo taken
from the Empire State Building on 30 October 2012 directed
towards the south which gives a view of the entire lower
end of Manhattan without power. The main topic of
this particular Manhattan geotagged tweet was accurately
classified as “impact” that is crucial for disaster response
with its subtopic as “utilities”.

4. RESULTS

Nightlight imagery for the study area from pre- and
post- Hurricane Sandy enables an analysis of change in
light emissions occurring due to the event. Areas of
reduced brightness due to the storm are calculated through
change detection to produce the brightness difference raster
(Figure 4). The areas showing the deepest red color denote
raster cells that most significantly decreased in brightness
after the effects of Hurricane Sandy. These areas are known
to have significant populations that suffered power outages
as a result of the storm. The analysis of geolocated tweets
show that there are more tweets using power related key
terms within the study area than outside the extent. The
communication on social media about power outages and
the condition of utilities is more relevant to the population
that is directly involved in the incident.

In order to use GIS to compare the spatial aggregation
of the vector points of tweets to the raster-based satellite
imagery, two kernel density rasters were created from the
tweets with the same pixel size and extent as the imagery;
one of power-related tweets (Figure 5) and one of all tweets
in the study area. This essentially converts the density of
geolocated tweets into the same geographic data type as the
imagery for comparison purposes. Another kernel density
raster of tweets was made by dividing the quantity of power-
related tweets raster by a raster of the quantity all tweets,
yielding a raster that shows the proportion of power-related
tweets over the area. The proportional representation
identifies raster areas that do not only have large populations
using Twitter to discuss the impact of Hurricane Sandy,
but also have tweets communicating information specifically
regarding power outages.

The proportional density raster of power outage related
tweet is used to adjust for social media population when
comparing the spatial distribution of Twitter to other
datasets. Figure 6 shows a spatial comparison calculated
by multiplying the pixel values of the brightness difference
raster and the proportion of power outage tweets kernel
density raster. This highlights areas with high density of
power-related tweets and a drop-off in imagery observed
brightness (indicative of a power outage). The spatial
overlap in the comparison of the brightness change detection
imagery and the kernel density of power related tweets
suggests that an aggregation of the tweets accurately
identified areas of power outage. Specifically, the southern
tip of Manhattan was identified as a region of human activity
with dense power related keyword tweets and one of the most
extreme decreases in brightness.

The identified areas of power outages are further verified
by classifying tweets for specific regions using text analysis.
The goal of this analysis is to identify at a street-level
resolution the areas in which both satellite data and tweets
indicate power outages in an urban environment. For this
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Figure 7: Power outage observed by imagery and tweets in Lower Manhattan: (left) Geotagged tweets
classified as “utilities” overlaid on the nightlight brightness change raster and (right) Kernel density of
“utilities” with several hotspots detected in areas of decreased brightness.

analysis, the second Twitter dataset is used due to its high
density of tweets in New York City. A spatial analysis was
performed only for tweets geotagged in lower Manhattan,
and for which the logistic regression assigned a topic of
“impact” and a subtopic of “utilities” based on the content
of the tweet.

Tweets classified as “utilities” are specifically of interest
due to the power outage related information they contain.
Figure 7 (left) shows the distribution of tweets classified as
“utilities” overlaid on nightlight imagery. The darkest raster
cells observed are those showing the greatest decrease in
brightness within the nightlight imagery change detection
with transparency applied for locational awareness. Figure 7
(right) emphasizes the spatial distribution of the density of
utility tweets with a scale of low value blue to high value
red. The high density “hotspots” of the “utilities” tweets
is observed to be within areas of the greatest decrease of
brightness in the nightlight imagery.

The nightlight satellite imagery identified the entire lower
tip of Manhattan as being dimmed compared to the pre-
event imagery. The Twitter data, interpolated using a
Gaussian kernel estimator, also identified the same region
during the event. However, the spatial resolution of the low
light satellite data is too coarse to perform a street-level
resolution analysis. Regardless, the imagery corresponding
spatially to the classification gives moderate certainty that
the information communicated through the geolocated tweet

is relevant to the location and the event. Text analysis
accurately classified tweets which can serve to narrow the
information search to find the most relevant and reliable
information. Spatially dense social media data provides
street-level coverage to determine power outages in an urban
area.

5. CONCLUSIONS

This paper presents an application of spatial interpolation
of Twitter data and nightlight satellite imagery for the
identification of areas with power outage during a natural
hazard. The fusion of these two datasets can lead to street-
level identification of power outages, and it is especially
effective in areas with high population density where social
media data are available at a large volume. Augmenting
traditional sources of data with real-time information on
human activity could improve situational awareness. In
fact, geolocated tweets filtered by keywords can be used to
identify damaged areas which have been fully evacuated,
versus areas where there is still significant human presence.

Fusion of spatial data can provide greater reliability for
location specific information for use during emergencies.
Social media is increasingly being monitored and analyzed
by emergency management without consideration of spatial
relationships within and between datasets. A GIS
methodology can be adopted by emergency management
to identify the spatial relationships of observations through
change detection, raster comparison, and kernel density.



Spatial processes built into GIS can be used to quickly
convert geolocated social media points to a raster grid that
aligns to imagery in order to identify areas of interest.

Social media streams are available at high temporal reso-
lution but with sparse spatial resolution unless aggregated,
while remote sensing data are available with high spatial res-
olution and coverage dependent on atmospheric conditions.
Nightlight imagery can be used to indicate power outages,
but because of the coarse pixel resolution it can only provide
indicators for regions. Nightlight imagery alone is not able
to identify street-level resolution of power outages and Twit-
ter alone provides an overwhelming volume of information.
By merging imagery and social media analysis the relevant
information is filtered to the identified spatial areas with
greater reliability.
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