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Abstract
US wilderness search and rescue consumes thousands of person-hours and millions of dollars annually.
Timeliness is critical: the probability of success decreases substantially after 24 hours. Although over 90%
of searches are quickly resolved by standard “reflex” tasks, the remainder require and reward intensive
planning. Planning begins with a probability map showing where the lost person is likely to be found. The
MapScore project described here provides a way to evaluate probability maps using actual historical
searches. In this work we generated probability maps the Euclidean distance tables in (Koester 2008), and
using Doke’s (2012) watershed model. Watershed boundaries follow high terrain and may better reflect
actual barriers to travel. We also created a third model using the joint distribution using Euclidean and
watershed features. On a metric where random maps score 0 and perfect maps score 1, the Euclidean dis-
tance model scored 0.78 (95%CI: 0.74–0.82, on 376 cases). The simple watershed model by itself was
clearly inferior at 0.61, but the Combined model was slightly better at 0.81 (95%CI: 0.77–0.84).

1 Introduction

Searching can be arduous, time consuming, and expensive. These characteristics justify “taking
the search out” of search and rescue (SAR), a worthy but unreachable goal: some search
always remains, and search requires planning. The probability of survival in land-search
decreases with time (Pfau 2011). Good planning makes search more efficient, reducing costs
and saving lives. The first step is deciding where to search: some areas are more likely than
others. In fact, some areas are so much more likely that >90% of searches are resolved within
a few hours based on “reflex” tasks to the high-probability areas (Koester 2008). However, the
remaining cases require and reward explicit planning using methods first developed in WWII
(Koopman 1980). Planning begins with a probability map showing where the lost person is
likely to be, allocates search effort to minimize expected time to find, and updates the map
after each operational period to account for completed searches, clues found, and possible
subject motion. In wilderness search (WiSAR) this is often either intuitive or manual, but with
increasing use of Geographic Information Systems (GIS) planning tools, WiSAR can create and
update detailed probability maps (Doherty et al. 2014). But how to tell a good map from a
poor one?
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In this article we generate and compare several probability maps for hundreds of historical
WiSAR incidents for which there were good initial and final coordinates. The incidents come
from the International Search and Rescue Incident Database (Koester 2010). Maps are scored
using a simple and robust metric from crime-mapping (Rossmo 1999). While there are a few
papers on producing WiSAR probability maps (see for example: Castle 1998; Soylemez and
Usul 2006; Sarow 2011; Lin and Goodrich 2010; Ferguson 2013; Doherty et al. 2014) there
has been no evaluation of the relative accuracy of different methods. This article is the first to
establish a performance baseline we hope will be surpassed repeatedly.

In practice, the most common way to assign probabilities to search regions is with sub-
jective estimates based on quartile distance statistics, particularly the summary statistics
found in Koester (2008): a simple ‘bulls-eye’ formed by the 25%, 50%, 75%, and 95%
probability circles. Thus the distance ring model serves as a baseline. We compare it to a
relatively recent watershed model (Doke 2012; Doherty et al. 2014), and a novel combina-
tion of the two.

The Introduction briefly reviews WiSAR costs and the use of probability maps in WiSAR.
Section 2, Scoring, introduces the MapScore website, Rossmo’s metric, and its desirable prop-
erties. Section 3, Data and Methods, introduces the models. Section 4, Results, evaluates these
models. Section 5, Discussion, provides a brief conclusion and recommendation for future
work.

1.1 Cost and Time

In the US, the National Park Services (NPS) alone conducts thousands of search and rescue
operations annually. According to NPS and the US Park Police (2012), the NPS conducted
4,080 SAR operations at a total cost of $5.3 million, or roughly $1,375 per mission. Figure 1
shows the increasing costs for SAR operations over the past several years (1995–2012).

The price appears to be rising faster than inflation: from 1992 to 2007 the NPS responded
to 65,439 incidents at an average cost of $895 per operation (Heggie and Amundson 2009).
However, from 2000 to 2012 the NPS responded to 53,351 incidents at an average cost of
$1,163. In constant 2013 US dollars, the average increase is about $160 per case. Nearly half
the total cost was overtime; the remainder was mostly aircraft (Heggie and Amundson 2009).
Yosemite National Park alone accounted for 25% of the total costs ($1.2 million).

Figure 1 Annual cost for Search and Rescue operations conducted by the National Park Service at
constant 2013 dollars
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Time is the other key issue. Figure 2 shows the decreasing chances of successful rescue
over time for hikers and children aged 4–6 years-old (Koester 2008; Pfau 2011). The decline is
due to a combination of injuries, exposure, exhaustion, and dehydration. The larger the search
area, the longer it takes to search. Therefore, limiting the search area substantially improves
the chance of rescue.

1.2 Probability Maps

Mathematical search theory (Koopman 1980) takes a probabilistic approach because, by defi-
nition, the location of any search object is unknown. Some of the earliest documented searches
divided the search region into smaller cells, and assigned probabilities to each of those cells
based on a structured mix of subjective and objective information. For example, Figure 3
shows maps from the 1967 search for the USS Scorpion (Richardson and Stone 2006) and
Figure 4 the 2009 Search for Air France Flight 447 (BEA 2012). Both have been recounted in
McGrayne (2012).

Search theory has advanced considerably since its origins in World War II, and modern
maritime search planning software like SAROPS (Kratzke et al. 2010) incorporate sophisti-
cated motion models and path planning for searchers. There is nothing comparable for
WiSAR. WiSAR has been slow to adopt search theory, in part because good probability maps
have been unavailable, and because probability of detection varies dramatically with small-
scale changes in terrain and vegetation. (There are also institutional reasons, such as the lack
of central authority or central funding for WiSAR.)

Maritime probability maps are conceptually simple: there is a physics of ocean drift,
however complicated. There is no equivalent for lost person behavior. Nevertheless, early
work by Syrotuck (1976/2000) showed that lost persons generally stayed very close to the
initial planning point (IPP): 60% were found within two miles (Euclidean or crow’s-flight dis-
tance). Based on his 242 cases from New York and Washington states, Syrotuck formulated a

Figure 2 Probability of successful rescue by time, for Hikers (left) and Children (right). From data in
(Koester 2008). Marker size indicates number of cases. Points are drawn at the observed frequency;
Error bars show 95% range based on smoothed resampling. The central tendency is clear: time is
not on your side.
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“ring” model, by noting the 25%, 50%, 75%, and 95% zones for eight subject categories
including: Hunters, Hikers, Elderly, and Child.1 Subsequent studies over the last 37 years have
collected more data from various regions in the US and abroad. Recently, Koester (2008,
2010) created a unified database containing thousands of cases worldwide. For each of his cat-
egories he reported summary statistics for: Euclidean distance, track offset, dispersion angle,
find location, scenario, mobility, and survivability.

Figure 3 Composite probability map for the USS Scorpion. Used with permission from (Richardson
and Stone 2006)
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Both Syrotuck and Koester create simple probability maps (like the distance-ring model)
directly from the summary statistics. In effect, this assumes that by the time the search has
started, the subject is not moving appreciably. The surprisingly small distances traveled suggest
this is a pretty good assumption in many cases. Nevertheless, ideally the models would
account for motion during the search. Several motion models have been formulated (Castle
1998; Lin and Goodrich 2010), which treat the subject’s movement as a stochastic process
governed by transition matrices which include, for example, a subject’s preference for uphill/
level/downhill, or moving from one kind of trail/vegetation to another, or simply going straight
versus turning.

These approaches generate a probability map by dropping thousands of simulated subjects
on the map around the IPP, and running a large Monte Carlo simulation. The advantage of
this approach is that the map evolves with time. The disadvantage is that it is hard to fit the
extra parameters because, almost by definition, we do not have any information on the lost
person’s actual trajectory. Progress will depend on having a good method for scoring probabil-
ity maps, so the fitting algorithms can improve.

In this article, we measure the performance of the baseline Euclidean distance model, and
a recent “watershed distance” model (Doke 2012; Doherty et al. 2014) that counts the
number of watersheds crossed by the lost person. Both Euclidean and watershed distance
models do well because most lost persons do not travel very far.

Figure 4 Air France 447 last known point (LKP, center of circles), floating debris (dots), and Phase III
probability map assuming inoperational pingers and accounting for searches in Phase I and II (left
inset). The wreckage (arrow) was found about 6.5 NM from the LKP in the red high-probability area.
Probabilities decrease from red to orange to yellow to green to blue. Drift map from (BEA 2012).
Inset used with permission from (Stone et al. 2011).
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2 Scoring

2.1 Genesis of MapScore

Rather than scoring the cases offline, MapScore provides a public website with a live
leaderboard and the potential to inspire friendly competition among potentially very different
approaches. The project began after discussion with the Brigham Young (BYU) WiSAR team
about how to compare their Bayesian motion model for lost person behavior (Lin and
Goodrich 2010) with our multivariate models. How did either compare with the simple
models implied by summary statistics? The BYU team helped fund initial work on what is
now the MapScore website (Twardy et al. 2012; Twardy 2012, http://mapscore.sarbayes.org),
and this article reports baseline scores for a Euclidean distance-ring model and a simple cost
distance model. The chosen score is based on the probability density assigned to the find
region.

Search theory has shown that expected search time is minimized by allocating resources
to maximize the “probable success rate”, or the amount of probability that we “sweep up”
with every unit of time (Stone 2007; Koopman 1980; Frost 1996). In theory we might want
to score a map based on expected time to find the subject, given optimal plans made on the
basis of the probability map and a map of detection indices for each resource. However, that
would require contentious assumptions about the resources at hand, how they can be used,
and their largely unknown detection indices. For purposes of portably comparing probability
maps, we can assume a single resource with detection equal in all regions. Then allocating
resources according to the probability density or Pden is optimal, and we can use a metric
based only on Pden. Pden is defined as the probability per unit area. The distinction between
Pden and POA (probability of area) matters because many methods assign probabilities to
regions of varying size. For example, the distance ring model assigns 25% probability both to
the small region around the IPP and to the entire search region beyond the 75% ring. We
would prioritize the former because the Pden is much higher. But if the final scored map has
been rasterized into equal-sized pixels with values equal to the probability contained in that
area, then POA and Pden are the same. The MapScore metric is suitable for rasterized prob-
ability maps.

2.2 Scoring Metric

Rossmo (1999) developed a robust metric R to compare probability maps for crime forecast-
ing. The metric is rank-ordered, and a good model will assign higher values to the actual
find location, compared with other areas. It measures the proportion of pixels that are
assigned higher values than the actual find location. The absolute value depends on the
image size, so MapScore uses a fixed size and scale. For each case, we place the IPP at the
exact center of a 5,001 × 5,001 pixel map, where each pixel is 5 m × 5 m wide. At this reso-
lution, models can use features as small as 10 m without aliasing effects. At this size, the
map extends 12.5 km in each cardinal direction from the IPP, which on average includes at
least 95% of the search cases. Models assign pixels a brightness value corresponding to
the estimated probability density at that pixel. (Most models will be much coarser than indi-
vidual pixels, so they will divide the total probability in a region by the number of pixels in
that region.)

Let p equal the probability assigned to the actual find location, N be the total number of
pixels in the image, n the number with probability greater than p, and let m be the number of
pixels with probability equal to p. Then we define:
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r
n m

N
= + 2 (1)

The value of r is then rescaled, so that the worst possible score is −1, and the best is +1:

R
r= −.

.
5

5
(2)

Because we corrected for pixels whose probability is equal to p, uniform (i.e. blank) maps get
a score of 0 and random maps get an expected score of 0.2

In the ideal scenario where all resource types have perfect detection and travel at the same
speed, the optimal allocation will follow probability density alone. Therefore r is the expected
proportion of cells one would have to search before finding the subject, and R is the propor-
tional gain over random searching. Because there is a great deal of uncertainty in search,
scoring a single case is not very informative. R only becomes meaningful when it is calculated
for many cases, to compare the average performance of different models on a fixed set of cases
at a fixed resolution and extent.

R is sensitive only to rank order, and not to the relative probability. Therefore, the actual
values may be converted to a suitable grayscale image using any visually pleasing monotonic
transform, and the scoring can be done directly on the image. However, the bit depth of the
image will limit the number of possible distinctions: an 8-bit grayscale image has at most 256
possible values, and a 16-bit grayscale image has 65,536.

2.3 Scoring Methodology

We use the format defined for the MapScore website (http://mapscore.sarbayes.org). Each map
is a 5,001 × 5,001 grayscale raster centered on the IPP. Each pixel is 5 m, resulting in a 25 ×
25 km search area, which exceeds the 95% zone in almost all cases, and represents an upper
bound on feasible ground searching. Models need not have 5 m resolution internally, but they
must convert their output to the standard format for scoring. MapScore uses 8-bit PNG files,
with lighter pixels representing higher probabilities.3 If the 256 possible values were used
equally, then each value would have about 98 K pixels, and R would have a maximum value
of 0.996.

R can be calculated offline, but using the website creates a public record and encourages
comparison with other methods, potentially including subjective estimates. Users may select a
case, receive the IPP and case information, and then upload a PNG image file with their prob-
ability map for that case. The website then scores the map using the actual find location,
which is revealed along with the score. MapScore also allows batch submission via folders or
zip files, so long as the individual maps are named to match the cases.

In the next section we discuss three relatively simple statistical models derived from ISRID
cases with good initial and find coordinates.

3 Data and Models

Koester (2008) organizes the ISRID cases into 41 categories and subcategories based on sce-
nario, age, medical or mental status, and activity. Critically, he provides 25%, 50%, 75%, and
95% quantiles for the Euclidean distance between the IPP and the find location. Koester also
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provides summary statistics for elevation change, hours mobile, survivability, dispersion angle,
and distance from nearest linear feature, when available. Where data permit, statistics are sub-
divided by domain (temperate, dry) and terrain (mountains, flat, and urban). The distance-ring
model is the most widely used in WiSAR operations, and linear distance is one of the most
reliably-reported features.

Most of the ISRID cases do not contain usable GIS coordinates for both the initial and
find locations. However, including the Yosemite data which became available during this
study, 376 ISRID cases had reliable IPP and find coordinates. A third of the cases (89) are from
New York, where a majority of the state is dominated by farms, forests, rivers, rolling moun-
tains and lakes. It comprises the Northeastern Highlands, Erie Drift Plain, Eastern Great Lakes
Lowlands and Atlantic Coastal Pine Barrens ecoregions (Bailey 1995; Bryce et al. 2010). A
third were from Arizona (88 cases, transitional between plains and mountains), and a third
from Yosemite National Park, California (199 cases), a rugged valley between granite peaks in
the Southern Sierra Nevada ecoregion (Bailey 1995).

3.1 Distance Model

The Euclidean distance (ring) model is probably the most common model in statistical search
planning. Dating back to Syrotuck (1976/2000), the model draws 25%, 50%, 75% and 95%
distance rings based on statistical crow’s-flight distance tables (Koester 2008). These distances
correspond to the lower quartile, median, upper quartile, and 95th percentile of distance trav-
elled by each category of lost persons in ISRID. As Table 1 shows, Koester’s distance model
considers terrain and ecoregion where the data permits. Figure 5 shows an example ring
model.

Don Ferguson’s Integrated Geospatial Tools for Search and Rescue (IGT4SAR Ferguson
2013; https://github.com/dferguso/IGT4SAR) implements all the distance-ring categories and
subcategories from Koester (2008) in an ArcGIS toolbox. IGT4SAR extends the MapSAR
(http://www.mapsar.net) toolbox to include various elements of search theory. MapSAR is a
free and open-source tool that runs with Esri’s ArcGIS Desktop 10.X software (http://
www.esri.com/landing-pages/software/arcgis/arcgis101-trial) and enables maps to be gener-
ated, stored, and printed quickly in order for research teams to be able to perform faster
searched for a missing person (MapSAR and Esri 2012).

The IGT4SAR distance model uses the ArcGIS Multiple Ring Buffer tool to create four
concentric rings centered on the IPP and representing the 25, 50, 75, and 95% distances for

Table 1 Hiker lost person behavior table used to create the distance rings generated from Koester
(2008)

Temperate Dry

UrbanMnt Flat Mnt Flat

n 568 274 221 58 8
25% 0.7 0.4 1.0 0.8
50% 1.9 1.1 2.0 1.3 1.6
75% 3.6 2.0 4.0 4.1
95% 11.3 6.1 11.9 8.1
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this subject category and the terrain. The rings are created on a 50 × 50 km region, and each
ring is assigned the appropriate probability. The remaining 5% is assigned to the region
outside the 95% circle. The five densities are then calculated by dividing each probability by
the area of the corresponding region, and assigned to every pixel in the region. The model then
clips the map to the 25 × 25 km evaluation region.

3.2 Watershed Model

Although the distance-ring model is easy to use on a paper map, it ignores terrain. Terrain
plays an important role in WiSAR. About 75% of WiSAR incidents happen in the mountains,
and mountains constrain travel. One simple way to account for terrain is to count watershed
crossings (Doke 2012). Watershed boundaries follow ridge lines and unlike distance rings,
reflect actual barriers to travel. Figure 6 shows an example of the watershed model.

In the US, watersheds are delineated by the US Geological Survey, using a national stand-
ard hierarchical system based on surface hydrologic features, and are classified into six units.
The six main types of hydrologic units are region, sub-region, accounting unit, cataloging unit,
watershed, and sub-watershed. Each hydrologic unit is identified by a unique hydrologic unit
code (HUC) and consists of two to 12 digits based on the level of classification. For this article
a complete digital hydrologic unit boundary level of the sub-watershed (12 digit) 6th level was
used as a base map for the watershed model. The typical size for a 12-digit hydrologic unit is

Figure 5 Distance ring model for hikers in flat and dry environments, on a representative basemap.
High probability areas are represented with darker colors while decreasing probabilities are shown
by light tan color
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10,000–40,000 acres; however, in some areas with unique geomorphology the watershed may
be greater than 40,000 acres or less than 10,000 acres, but never less than 3,000 acres. The
sub-watershed (HUC-12) is the most detailed nationwide layer now available.4

The watershed containing the IPP is numbered “0”. All the watersheds on its border are
numbered “1”, so each watershed is assigned a number counting the minimum number of
ridges between the IPP and the center of the watershed. We calculated watershed statistics
from 398 historical cases, as shown in Table 1. Each incident was classified as either “0”, if
found in the same catchment as the IPP, “1” if found adjacent, and so forth up to “3”. Only 1
in 17 cases (about 6%) were found three or more watersheds away. See Table 2 for details.

Lastly, we divide the watershed-distance probabilities by the areas of all the watersheds at
that distance, to get each region’s Pden.5

3.3 Combined DW Model

A combined model may be made by simply “stacking” the two model layers, which is equiva-
lent to a weighted average, or by calculating the actual joint probability distribution on the
union of regions. The joint distribution will do better when the two models are not independ-
ent and there is enough data reliably to estimate the interaction. A combined model using the
joint distribution of watersheds and Euclidean distance was designed with the expectation that
the model would do better than the two models taken separately, as is usually the case when
combining estimates (Mattson 1980; Surowiecki 2005).

Figure 6 Watershed model showing terrain-based “rings” for a flat and dry environment, on a rep-
resentative basemap
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Figure 7 shows an example of the combined “Distance Watershed” (DW) model. The map
regions are created by intersecting the distance rings and the watersheds (using the Union tool)
so that a watershed cut by a distance ring becomes two new regions.

The probabilities for the combined DW regions are derived from the counts in Table 3.
For example, Table 3 shows that the regions within the same watershed as the IPP and in the
50% ring only contained the lost person in 61 out of 355 cases, or about 17% of the time.

Table 2 Watershed distance statistics gathered using ISRID and Yosemite data

States
0: Same
Watershed

1: One shed
away

2: Two sheds
away

3: Three+
sheds away Total

Arizona 57 46 7 12 122
New York 71 24 3 4 102
Yosemite 87 74 10 3 174

215 144 20 19 398

Arizona 47% 38% 6% 10% 100%
New York 70% 24% 3% 4% 100%
Yosemite 50% 43% 6% 2% 100%

Figure 7 Combined Euclidean and Watershed distance model for hiker in a flat and dry environ-
ment. Dark shades represent higher probability density
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The model then assigns a probability density by dividing the probability from Table 3 by
the total area of all the polygons assigned to that DW region in the map. For example, in
Figure 8, the regions A, B, C and D constitute the [Watershed 1, 95% ring] region; each is
assigned an un-normalized “probability” of 48/355 from Table 3, which is then divided by the
combined area A+B+C+D. Note the watershed for region A also extends into the 75, 50, and
even 25% rings. Although the probability of the [Watershed 1, 25% ring] region is only 9/355,
the smaller area yields a higher Pden, shown by the darker shade for the inner two rings of A’s
watershed.

4 Results

The distance ring model received an average score of approximately 0.780 (95%CI: 0.740 –
0.819). The watershed model received a lower average score of 0.611 (95%CI: 0.572 – 0.650),

Table 3 Distance Rings and Watershed statistics based on ISRID and Yosemite data

Distance
Rings

0: Same
Watershed

1: One
Watershed
away

2: Two
Watersheds
away

3: Three+
Watersheds
away

Total
number
of cases

25% 93 9 0 0 102
50% 61 25 1 0 87
75% 25 29 1 0 55
95% 17 48 9 4 78
100% 1 7 7 18 33

Total 197 118 18 22 355

Figure 8 Calculating Pden for the combined Distance-Watershed model
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and the combined model scored the highest with an average score of 0.805 (95%CI: 0.769 –
0.841). The watershed model is clearly inferior to the other two. However, the combined
model is slightly better (two-tailed, paired T-test, N = 376, tcrit = 1.966, p = 0.017). See
Figure 9 for a comparison.

Despite largely ignoring local terrain, the ISRID distance ring model sets a high bar.
Beating the ISRID distance model for hikers on our 5,001-pixel-square images requires scoring
solidly above about 0.8. By adding some very basic terrain information, the Combined model
achieves improvements of about 6% of the original standard deviation, and about 11% of the
possible gain.

There was also a regional influence. All models had their best performance in New York
and their worst in Arizona where variance was also highest. The difference was statistically
significant for both Distance and Combined models but not the Watershed model, which had
poor performance in all three regions (F-crit = 3.02, F-value = 11.4, 8.6, 2.8; see Table 4.)
Also, performance differences between models were statistically significant in New York and
Yosemite, but not in Arizona (one-way ANOVA, F-value = 29.13, F-crit = 3.00). The com-
bined model performed the best and with the least variance for the state of New York, with an
average score of 0.887 and variance of 0.059.

5 Discussion

This study had four goals:

• To create a method and portal for scoring missing-person probability maps;
• To score the ubiquitous ISRID Euclidean-distance “ring” model;
• To compare the ring model with a new watershed model; and
• To compare those models with a combined distance-watershed model.

The results for the distance ring model were as expected. Based purely on ring geometry, the
expected value of R for Hikers in a dry, mountainous domain is 0.78, closely mirroring the
actual result (which was indeed mostly hikers in such environments). It was also anticipated

Figure 9 Average rating scores of the three models used in the study. The whiskers represent the
95% confidence intervals of the mean
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that the distance ring model would score slightly higher in the state of New York than Arizona
or Yosemite Park: because development and vegetation limit travel, the distance rings are
closer in NY. (The temperate flat category has a 75% of 2 km, vs. 4 km for the dry flat
category).

The watershed model did worse than the ISRID distance rings, but performed surprisingly
well considering that it ignores the subject category, environment, and climate (unlike the
distance-ring model). It also scored higher in New York than in Arizona or Yosemite. The
watersheds in our New York cases tend to be larger. Although Arizona has a lot of flat regions,
most of the searches happened near the mountains, and the Arizona mountains are more
rugged than the New York mountains. Yosemite, of course, is at least as rugged as Arizona.

It also helped that the New York IPPs were more likely to be somewhere in the center of a
watershed, rather than on the ridge boundary, making the watershed distance parameter more
reliable. When the IPP is on the dividing ridge, it is essentially random which side of the ridge
will count as watershed 0.

6 Conclusions and Future Work

The goal of any SAR operation is to increase the probability of success as quickly as possible
with the available resources. Search and rescue activities rely heavily upon geospatial data, and
GIS generation of the probability maps can speed search planning and generate better plans.
However, while higher-resolution models including more factors will always seem more
appealing, they need to be tested. MapScore provides a large set of historical missing-person
cases, and a web portal for scoring and comparing models.

This article publishes baseline scores for three relatively simple models: the commonly
used ISRID Euclidean distance-ring model, a new watershed model which ignores subject cat-
egory or terrain, and a combination of the two models. The watershed model by itself elimi-
nated about 60% of the search area, but the familiar distance-ring model did better,
eliminating over 75% of the search area. The combined DW model eliminated over 80% of
the search area, showing a statistical difference. All models did better in New York and
Yosemite, and worse in Arizona.

Live GIS-based probability maps should improve key search planning decisions and
increase situation awareness. Even if the GIS did not suggest resource assignments, displaying
validated scenario-specific probability maps would be faster than drawing regions manually

Table 4 Model mean and (variance) by region. F-statistic: α = 0.05, DF = 2, F-critical = 3.020

State Distance Model Watershed Model Combined Model

Arizona 0.632 0.533 0.656
(0.244) (0.194) (0.215)

New York 0.841 0.666 0.887
(0.129) (0.122) (0.059)

Yosemite 0.818 0.621 0.834
(0.117) (0.139) (0.106)

F- statistic 8.588 2.792 11.366
(p = .0002) (p = .06) (p = .00002)
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and more accurate than intuitively sloshing probabilities into those regions. But the models
tested here only automate the current manual method.

The next step is to explore parametric distance models6 to remove the “jumps” in probabil-
ity at the ring boundaries. Following that, the terrain model should be improved. One option is
to refine the watershed layer. The HUC 12-digit watershed layer, although the most detailed cur-
rently available, has watershed regions that are too large for search purposes. A finer scale water-
shed layer may better capture the dynamics of movement and receive better scores. In addition,
the watershed model should better account for IPPs on the ridge between the two watersheds,
perhaps by assigning ridge cases partially to all neighboring watersheds, or to a separate area.

If there is sufficient data available for the search region, another option is to augment
watersheds with other travel barriers like streams and slopes, or skip simple barrier models
entirely in favor of calculating travel cost surfaces. Preliminary tests of travel cost models
showed the limiting factor was the quality of the available data layers. However, with effort a
nationwide set could be synthesized for testing on MapScore.

Finally, these are all but steps along the way to defining actual motion models for SAR.
We have not yet tested any motion models, though we are collaborating with other researchers
to do so. Motion models have many parameters and assumptions, and without a good test
suite like MapScore, they are difficult to evaluate.

MapScore has provided case data, a scoring metric, and a scored baseline. We invite con-
tributions and hope within a year to see models scoring above 0.9.

Notes

1 Syrotuck’s model was actually a bit more involved, and his “rings” often resembled paper clips, but
most of his readers just used the linear distance.

2 Koester’s correction matters in rule-based models where many pixels get the same value.
3 MapScore may switch to 16-bit when participants start submitting higher-resolution models.
4 The Watershed Boundary Dataset (WBD) and the National Hydrography Dataset (NHD) are coordi-

nated efforts between the US Department of Agriculture–Natural Resources Conservation Service
(USDA-NRCS 2013), the US Geological Survey (USGS), and the US Environmental Protection Agency
(EPA). They were created from a variety of sources from each state and aggregated into a standard
national layer for use in strategic planning and accountability (http://nhd.usgs.gov/wbd_data
_citation.html).

5 Although this Pden method is correct on average, it could generate abnormal Pdens if, for example,
the watershed-0 region was extraordinarily large (yielding too low a Pden near the IPP), or the
watershed-3 region was clipped so as to be extraordinarily small (yielding a high Pden far away). A
better method would be to calculate the average Pdens as part of the overall statistics, and apply those
directly to each case.

6 Forthcoming. See Cawi (2014) for a preview.
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