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Abstract Environmental hazards pose a significant threat to urban areas due to

their potential catastrophic consequences affecting people, property and the

environment. Remote sensing has become the de-facto standard for observing the

Earth and its environment through the use of air-, space-, and ground-based sensors.

Despite the quantity of remote sensing data available, gaps are often present due to

the specific limitations of the instruments, their carrier platforms, or as a result of

atmospheric interference. Massive amounts of data are generated from social

media, and it is possible to mine these data to fill the gaps in remote sensing

observations.

A new methodology is described which uses social networks to augment remote

sensing imagery of transportation infrastructure conditions during emergencies.

The capability is valuable in situations where environmental hazards such as

hurricanes or severe weather affect very large areas. This research presents an

application of the proposed methodology during the 2013 Colorado floods with a

special emphasis in Boulder County and The City of Boulder. Real-time data

collected from social media, such as Twitter, are fused with remote sensing data

for transportation damage assessment. Data collected from social media can pro-

vide information when remote sensing data are lacking or unavailable.
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1 Introduction

Every year natural hazards are responsible for powerful and extensive damage to

people, property, and the environment. Drastic population growth, especially along

coastal areas or in developing countries, has increased the risk posed by natural

hazards to large, vulnerable populations at unprecedented levels (Tate and

Frazier 2013). Furthermore, unusually strong and frequent weather events are

occurring worldwide, causing floods, landslides, and droughts affecting thousands

of people (Smith and Katz 2013). A single catastrophic event can claim thousands

of lives, cause billions of dollars of damage, trigger a global economic depression,

destroy natural landmarks, render a large territory uninhabitable, and destabilize the

military and political balance in a region (Keilis-Borok 2002). Furthermore, the

increasing urbanization of human society, including the emergence of megacities,

has led to highly interdependent and vulnerable social infrastructure that may lack

the resilience of a more agrarian, traditional society (Wenzel et al. 2007). In urban

areas, it is crucial to develop new ways of assessing damage in real-time to aid in

mitigating the risks posed by hazards. Annually, the identification, assessment, and

repair of damage caused by hazards requires thousands of work hours and billions

of dollars.

Remote sensing data are of paramount importance during disasters and have

become the de-facto standard for providing high resolution imagery for damage

assessment and the coordination of disaster relief operations (Cutter 2003; Joyce

et al. 2009). First responders rely heavily on remotely sensed imagery for coordi-

nation of relief and response efforts as well as the prioritizing of resource allocation.

Determining the location and severity of damage to transportation infrastructure

is particularly critical for establishing evacuation and supply routes as well as repair

and maintenance agendas. Following the Colorado floods of September 2013 over

1000 bridges required inspection and approximately 200 miles of highway and

50 bridges were destroyed.1 A variety of assessment techniques were utilized

following Hurricane Katrina in 2005 to evaluate transportation infrastructure

including visual, non-destructive, and remote sensing. However, the assessment

of transportation infrastructure over such a large area could have been accelerated

through the use of high resolution imagery and geospatial analysis

(Uddin 2011; Schnebele et al. 2015).

Despite the wide availability of large remote sensing datasets from numerous

sensors, specific data might not be collected in the time and space most urgently

required. Geo-temporal gaps result due to satellite revisit time limitations, atmo-

spheric opacity, or other obstructions. However, aerial platforms, especially

Unmanned Aerial Vehicles (UAVs), can be quickly deployed to collect data

about specific regions and be used to complement satellite imagery. UAVs are

capable of providing high resolution, near real-time imagery often with less

expense than manned aerial- or space-borne platforms. Their quick response

1http://www.denverpost.com/breakingnews, http://www.thedenverchannel.com/news/local-news.
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times, high maneuverability and resolution make them important tools for disaster

assessment (Tatham 2009).

Contributed data that contain spatial and temporal information can provide

valuable Volunteered Geographic Information (VGI), harnessing the power of

‘citizens as sensors’ to provide a multitude of on-the-ground data, often in real

time (Goodchild 2007). Although these volunteered data are often published with-

out scientific intent, and usually carry little scientific merit, it is still possible to

mine mission critical information. For example, during hurricane Katrina,

geolocated pictures and videos searchable through Google provided early emer-

gency response with ground-view information. These data have been used during

major events, with the capture, in near real-time, of the evolution and impact of

major hazards (De Longueville et al. 2009; Pultar et al. 2009; Heverin and

Zach 2010; Vieweg et al. 2010; Acar and Muraki 2011; Verma et al. 2011; Earle

et al. 2012; Tyshchuk et al. 2012).

Volunteered data can be employed to provide timely damage assessment, help in

rescue and relief operations, as well as the optimization of engineering reconnais-

sance (Laituri and Kodrich 2008; Dashti et al. 2014; Schnebele and

Cervone 2013; Schnebele et al. 2014a,b). While the quantity and real-time avail-

ability of VGI make it a valuable resource for disaster management applications,

data volume, as well as its unstructured, heterogeneous nature, make the effective

use of VGI challenging. Volunteered data can be diverse, complex, and overwhelm-

ing in volume, velocity, and in the variety of viewpoints they offer. Negotiating

these overwhelming streams is beyond the capacity of human analysts. Current

research offers some novel capabilities to utilize these streams in new, ground-

breaking ways, leveraging, fusing and filtering this new generation of air-, space-

and ground-based sensor-generated data (Oxendine et al. 2014).

2 Data

Multiple sources of contributed, remote sensing, and open source geospatial data were

collected and utilized during this research. All the data are relative to the 2013Colorado

floods, and were collected between Septmber 11 and 17, 2013. Most of the data were

collected in real time, as the event was unfolding. A summary of the sources and

collection dates of the contributed and remote sensing data is available in Table 1.

Table 1 Sources and collection dates of contributed and remote sensing data

Data 9.11 9.12 9.13 9.14 9.15 9.16 9.17

Contributed

Twitter X X X X X X X

Photos X X X X

Remote sensing

Landsat-8 X

Civil Air Patrol X X X X
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2.1 Contributed Data

2.1.1 Twitter

The social networking site Twitter is used by the public to share information about

their daily lives through micro-blogging. These micro-blogs, or ‘tweets’, are limited

to 140 characters, so abbreviations and colloquial phrasing are common, making

the automation of filtering by content challenging. Different criteria are often

applied for filtered and directed searches of Twitter content. For example, a

hashtag2 is an identifier unique to Twitter and is frequently used as a search tool.

The creation and use of a hashtag can be established by any user and may develop a

greater public following if it is viewed as useful, popular, or providing current

information. Other search techniques may use keywords or location for filtering.

Twitter data were collected using a geospatial database setup at The Pennsylva-

nia State University (PSU) GeoVISTA center. Although the volume of Twitter data

streams is huge, only a small percentage of tweets contain geolocation information.

For this particular study, about 2000 geolocated tweets were collected with hashtag

#boulderflood.

2.1.2 Photos

In addition, a total of 80 images relating to theperiod from11–14September 2013were

downloaded through the website of the city of Boulder (https://bouldercolorado.gov/

flood). These images did not contain geolocation information, but they included a

descriptionofwhenandwhere theywere acquired.ThegoogleAPIwas used to convert

the spatial description to precise longitude and latitude coordinates.

While in the current research the data were semi-manually georectified, it is

possible to use services such as Flickr or Instagram to automatically download

geolocated photos. These services can provide additional crucial information dur-

ing emergencies because photos are easily verifiable and can contain valuable

information for transportation assessment.

2.2 Remote Sensing

2.2.1 Satellite

Full-resolution GeoTIFF multispectral Landsat 8 OLI/TIRS images that were

collected on May 12, 2013 and on September 17, 2013 provided data of the Boulder

County area before and after the flooding, respectively. The data were downloaded

2A word or an unspaced phrase prefixed with the sign #.
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from the USGS Hazards Data Distribution System (HDDS). Landsat 8 consists of

nine spectral bands with a resolution of 30m: Band 1 (coastal aerosol, useful for

coastal and aerosol studies, 0.43–0.45 μm); Bands 2–4 (optical, 0.45–0.51,

0.53–0.59, 0.64–0.67 μm), Band 5 (near-IR, 0.85–0.88 μm), Bands 6 and 7 -

(shortwave-IR, 1.57–1.65, 2.11–2.29 μm) and Band 9 (cirrus, useful for cirrus

cloud detection, 1.36–1.38 μm). In addition, a 15m panchromatic band (Band

8, 0.50–0.68 μm) and two 100m thermal IR (Bands 10 and 11, 10.60–11.19,

11.50–12.51 μm ) were also collected from Landsat 8 OLI/TIRS.

2.2.2 Aerial

Aerial photos collected by the Civil Air Patrol (CAP), the civilian branch of the

US Air Force, captured from 14–17 September 2013 in the areas surrounding

Boulder (105:5364�104:9925∘ W longitude and 40:26031�39:93602∘ N latitude)

provided an additional source of remotely sensed data. The georeferenced Civil Air

Patrol RGB composite photos were downloaded from the USGS Hazards Data

Distribution System (HDDS).

2.3 Open Source Geospatial Data

Shapefiles defining the extent of the City of Boulder and Boulder County were

downloaded from the City of Boulder3 and the Colorado Department of Local

Affairs4 websites, respectively. In addition, a line/line shapefile of road networks

for Boulder County was downloaded from the US Census Bureau.5

3 Methods

The proposed methodology is based on the fusion of contributed data with remote

sensing imagery for damage assessment of transportation infrastructure.

3.1 Classification of Satellite Images

For the Colorado floods of 2013, supervised machine learning classifications were

employed to identify water in each of the satellite images. Water pixels are

3https://bouldercolorado.gov.
4http://www.colorado.gov.
5http://www.census.gov.
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identified in both Landsat images by using a decision tree induction classifier.

Ripley (2008) describes the general rule induction methodology and its implemen-

tation in the R statistical package used in this study. In the near-IR water is easily

distinguished from soil and vegetation due to its strong absorption (Smith 1997).

Therefore, imagery caught by Landsat’s Band 5 (near IR, 0.85–0.88 μm) was used

for the machine learning classification. Control areas of roughly the same size are

identified as examples of water pixels, ‘water’, and over different regions with no

water pixels as counter-examples, or ‘other’. Landsat data relative to these regions

are used as training events by the decision tree classifier. The learned tree is then

used to classify the remaining water pixels in the scene. This process is repeated for

both the May and September images.

3.2 Spatial Interpolation

Satellite remote sensing data may be insufficient as a function of revisit time or

obstructions due to clouds or vegetation. Therefore, data from other sources can be

used to provide supplemental information. Aerial remote sensing data as well as

contributed data, or VGI, from photos and tweets were used to capture or infer the

presence of flooding in a particular area.

Utilizing different types and sources of data, this research aims to extract as

much information as possible about damage caused by natural hazards. Environ-

mental data are often based on samples in limited areas, and the tweets analyzed are

approximately only 1% of the total tweets generated during the time period. This is

usually referred to as the ‘Big Data paradox’, where very large amounts of data to

be analyzed are only a small sample of the total data, which might not reflect the

distribution of the entire population.

In addition, the absence of data in some parts of the region is likely to underes-

timate the total damage. In order to compensate for the missing data, the spatio-

temporal distribution of the data were analyzed by weighting according to the

spatial relationships of the points (Tobler 1970, p. 236). This assumes some levels

of dependence among spatial data (Waters 2017). For these reasons a punctual

representation of data may not be sufficient to provide a complete portrayal of the

hazard, therefore a spatial interpolation is employed to estimate flood conditions

and damage from point sources.

Spatial interpolation consists of estimating the damage at unsampled locations

by using information about the nearest available measured points. For this purpose,

interpolation generates a surface crossing sampled points. This process can be

implemented by using two different approaches: deterministic models and statisti-
cal techniques. Even if both use a mathematical function to predict unknown

values, the first method does not provide an indication of the extent of possible

errors, whereas the second method supplies probabilistic estimates. Deterministic

models include IDW(Inverse Distance Weighted), Rectangular, NN (Natural
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Neighbourhood) and Spline. Statistical methods include Kriging (Ordinary, Simple

and Universal) and Kernel. In this project, Kernel interpolation has been used.

Kernel interpolation is the most popular non-parametric density estimator, that is

a function p̂ : ℜ� ðℜÞN ! ℜ. In particular it has the following aspect:

p̂ xð Þ ¼ 1

Nh

XN

i¼1

K
x� xi
h

� �
: ð1Þ

where K(u) is the Kernel function and h is the bandwidth (Raykar and

Duraiswami 2006). There are different kinds of kernel density estimators such as

Epanechnikov, Triangular, Gaussian, Rectangular. The density estimator chosen

for this work is a Gaussian kernel with zero mean and unit variance having the

following form:

p̂ xð Þ ¼ 1

N
ffiffiffiffiffiffiffiffiffiffi
2πh2

p
XN

i¼1

e�ðx�xiÞ2=2h2 : ð2Þ

Kernel interpolation is often preferred because it provides an estimate of error as

opposed to methods based on radial basis functions. In addition, it is more effective

than a Kriging interpolation in cases of small data sets (for example, the data set of

photos in this project) or data with non-stationary behavior (all data sets used in this

work) (Mühlenstädt and Kuhnt 2011).

In general, spatial interpolation is introduced to solve the following problems

associated with histograms:

• The wider the interval, the greater the information loss;

• Histograms provide estimates of local density (points are “local” to each other if
they belong to the same bin) so this method does not give prominence to

proximity of points;

• The resulting estimate is not smooth.

These problems can be avoided by using a smooth kernel function, rather than a

histogram “block” centered over each point, and summing the functions for each

location on the scale. However, it is important to note that the results of kernel

density interpolations are very dependent on the size of the defined interval or

“bandwidth”. The bandwidth is a smoothing parameter and it determines the width

of the kernel function.

The result of a kernel density estimation will depend on the kernel K(u) and the

bandwidth h chosen. The former is linked to the shape, or function, of the curve

centered over each point whereas the latter determines the width of the function.

The choice of bandwidth will exert greater influence over an interpolation result

than the kernel function. Indeed, as the value of h decreases, the local weight of

single observations will increase.
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Because confidence in data may vary with source characteristics, bandwidth

selection can be varied for each data type. Generally, as certainty, or confidence, in

a given data source increases so does the chosen bandwidth. For example, aerial

images can be verified visually and therefore are considered to be more credible

information sources. By contrast some tweets could not be useful since they are

subjective; indeed some may only contain users’ feelings and not information

related to damage caused by the hazard. For this reason a lower bandwidth for

tweets has been chosen in this work.

There are different methods for choosing an appropriate bandwidth. For exam-

ple, it can be identified as the value that minimizes the approximation of the error

between the estimate p̂ ðxÞ and the actual density p(x) as explained in Raykar and

Duraiswami (2006). In this work, a spatial Kernel estimation has been used because

all considered data sets consist of points on the Earth’s surface. In case of

d-dimensional points the form of the Kernel estimate is:

p̂ ðx;HÞ ¼ n�1
XN

i¼1

KHðx� XiÞ ð3Þ

where:

x ¼ ðx1,x2, . . . ,xdÞT
Xi ¼ ðXi1,Xi2, . . . ,XidÞT
i ¼ 1, 2, . . . ,N

KHðxÞ ¼ jHj�1=2KðH�1=2xÞ

In this case K(x) is the spatial kernel and H is the bandwidth matrix, which is

symmetric and positive-definite. As in the uni-dimensional case, an optimal band-

width matrix has to be chosen, for example, using the method illustrated in Duong

and Hazelton (2005). In this project, data have been interpolated by using the R

command smoothScatter of the package graphics based on the Fast Fourier
transform. It is a variation of regular Kernel interpolation that reduces the compu-

tational complexity from O(N2) to O(N ). The O (‘big O’) notation is a Computer

Science metric to quantify and compare the complexity of algorithms (Knuth 1976).

O(N ) indicates a linear complexity, whereas O(N2) indicates a much higher,

quadratic, complexity. Generally, the bandwidth is automatically calculated by

using the R command bkde2D of the R package KernSmooth. However, the

bandwidth for tweets interpolation has been specified because information related

to them has a lower weight.
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4 Analysis and Results

4.1 Damage Assessment

Using a supervised machine learning classification as discussed in Sect. 3.1, water

pixels were identified in these images. For example, a comparison of the classifi-

cations in the Landsat 12 May, 2013 ‘before’ image (Fig. 1a) and the Landsat

17 September, 2013 ‘after’ image (Fig. 1b) illustrates additional water pixels

classified in the ‘after’ image associated with the flood event. One of the challenges

associated with classifying remote sensing imagery is illustrated in (Fig. 1b) where

clouds over the front range in Colorado are misclassified as water pixels. In

addition, because the Landsat ‘after’ image was collected on 17 September,

7 days after the beginning of the flood event, it is likely that the maximum flood

extent is not captured in this scene.

Following the collection of remote sensing data, contributed data were also

collected, geolocated, and interpolated following the methods discussed in

Sect. 3.2. The interpolated pixels were then overlayed on the remote sensing

classification to give an enhanced indication of flood activity in the Boulder area

(Fig. 2). The use of supplemental data sources, such as the Civil Air Patrol (CAP)

aerial photos, shows flooding in areas that was not captured by the satellite remote

sensing. In the case of the Boulder flooding, the cloud cover over the front range

and western parts of the City of Boulder, made the identification of water from

satellite platforms difficult. The ability of planes to fly below cloud cover as well as

to collect data without the revisit limitations common to space-borne platforms,

allowed the CAP to capture flooding and damage not visible from satellite images

in the western parts of Boulder County (Fig. 2).

4.2 Transportation Classification

Although the identification of water in the near-IR is a standard technique, the

supervised classification of the Landsat data did not indicate any pixels as ‘water’ in

the City of Boulder (Fig. 1b). This could be because the image was collected on

17 September, a week after the flood event began, and flood waters could have

receded, as well as the presence of obstructing vegetation and cloud cover. How-

ever, it is interesting to note that contributed data such as photos and tweets do

indicate the presence of flooding in the City of Boulder. Using the geolocated

tweets (n¼130) containing the hashtag ‘#boulderflood’ geolocated near Boulder

ð105:0814∘�105:2972∘ W longitude and 40:09947∘�39:95343∘ N latitude) as well

as geolocated photos (n¼80), flood activity is indicated by local citizens in the

downtown area. While there may be uncertainties associated with information

obtained from tweets, the presence of flooding and damage are more easily verified

in photos.

Using Social Media and Satellite Data for Damage Assessment in Urban Areas. . . 451

piyushimita.thakuriah@glasgow.ac.uk



Fig. 1 Water pixel classification using Landsat 8 data collected 12 May 2013 (a) and

17 September 2013 (b). The background images are the Landsat band 5 for each of the 2 days
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Using contributed data points (Fig. 3a), a flooding and damage surface is inter-

polated using a kernel density smoothing application as discussed in Sect. 3.2 for

the downtown Boulder area. After an interpolated surface is created from each data

set (tweets and photos), they are combined using a weighted sum overlay approach.

The tweets layer is assigned a weight of 1 and the photos layer a weight of

2. A higher weight is assigned to the photos layer because information can be

more easily verified in photos, therefore there is a higher level of confidence in this

data set. The weighted layers are summed yielding a flooding and damage assess-

ment surface created solely from contributed data (Fig. 3b). This surface is then

paired with a high resolution road network layer. Roads are identified as potentially

compromised or impassable based on the underlying damage assessment (Fig. 3c).

In a final step, the classified roads are compared to roads closed by the Boulder

Emergency Operations Center (EOC) from 11–15 September 2013 (Fig. 3d).
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BoulderCity

BoulderCounty
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Fig. 2 Classified Landsat 8 image collected 17 September 2013 image and interpolated ancillary

data give an indication of flood activity around the Boulder, CO area. While some data sources

overlap, others have a very different spatial extent
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Fig. 3 Using contributed data geolocated in the downtown Boulder area (a), an interpolated

damage surface is created (b) and when paired with a road network, classifies potentially

compromised roads (c). Roads which were closed by the Boulder Emergency Operations Center

(EOC) that were also classified using this approach (d)
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5 Conclusions

Big data, such as those generated through social media platforms, provide unprec-

edented access to real-time, on-the-ground information during emergencies,

supplementing traditional, standard data sources such as space- and aerial-based

remote sensing. In addition to inherent gaps in remote sensing data due to platform

or revisit limitations or atmospheric interference, obtaining data and information

for urban areas can be especially challenging because of resolution requirements.

Identifying potential damage at the street or block level provides an opportunity for

triaging site visits for evaluation. However, utilizing big data efficiently and

effectively is challenging owing to its complexity, size, and in the case of social

media, heterogeneity (variety). New algorithms and techniques are required to

harness the power of contributed data in real-time for emergency applications.

This paper presents a new methodology for locating natural hazards using

contributed data, in particular Twitter. Once remote sensing data are collected,

they, in combination with contributed data, can be used to provide an assessment of

the ensuing damage. While Twitter is effective at identifying ‘hot spots’ at the city

level, at the street level other sources provide a supplemental source of information

with a finer detail (e.g. photos). In addition, remote sensing data may be limited by

revisit times or cloud cover, so contributed ground data provide an additional

source of information.

Challenges associated with utilizing contributed data, such as questions related

to producer anonymity and geolocation accuracy as well as differing levels in data

confidence make the application of these data during hazard events especially

challenging. In addition to identifying a particular hazard, in this case flood waters,

by pairing the interpolated damage assessment surface with a road network creates

a classified ‘road hazards map’ which can be used to triage and optimize site

inspections or tasks for additional data collection.
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