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Abstract The mitigation and response to floods rely on accurate and timely flood

assessment. Remote sensing technologies have become the de facto approach for observing

the Earth and its environment. However, satellite remote sensing data are not always

available, and it is crucial to develop new techniques to complement them with additional

sources. This research proposes a new methodology based on machine learning algorithms

to automatically identify water pixels in Civil Air Patrol (CAP) aerial imagery. Specifi-

cally, a wavelet transformation is paired with multiple classifiers to build models that

discriminate water and non-water pixels. The learned classification models are first tested

against a set of control cases and then used to automatically classify each image separately.

Lastly, for each pixel in an image, a measure of uncertainty is computed as a proportion of

the number of models that classify the pixel as water. The proposed methodology is tested

on imagery collected during the 2013 Colorado flood.

Keywords Supervised classification � Remote sensing � Damage assessment � Natural
hazards � Flood � Civil air patrol

1 Introduction

The study of environmental hazards and mitigation of their effects are essential for the

development and sustainment of our society. Over the past decade, thousands of events

have caused significant damage to people, property, and the environment. Some of these

events occurred in statistically rare areas and with unprecedented strength.
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Remote sensing is the de facto technique for observing the Earth and its environment as

it makes it possible to acquire information about Earth from space (Joyce et al. 2009). In

particular, the coupling of remote sensing and geographic information systems (GIS) have

greatly facilitated the operation of flood mapping and risk assessment (Nagasawa 2014;

Schumann et al. 2009; Vijayaraghavan et al. 2012). This is due to the availability and high

spatial and spectral resolution of remote sensing data and the visualization of flooding

using GIS. When combined, these two aspects create the potential to further analyze and

estimate probable damage due to flooding (Sanyal and Lu 2004; Mason et al. 2007;

Sakamoto et al. 2007).

The idea of extracting features from imagery using statistical and structural approaches

can be traced back to the early 1970s (Haralick 1979). Researchers first started using 80 m

Landsat data to identify flooded areas in Iowa and in the Mississippi River Basin. In

particular, the near-infrared band available on many remote sensing platforms has been

found to be particularly suitable for identifying water because of its strong absorption of

energy in the 700 nm–1.3 mm range of the electromagnetic (EM) spectrum (Smith 1997;

Rango and Anderson 1974; Rango and Salomonson 1974; Moody et al. 2014).

Employing a similar understanding of water’s low spectral response in the optical range

(visible NIR), higher spatial resolution platforms have been used to improve the capability

of water identification and flood delineation. Platforms, such as Landsat Thematic Mapper

(TM), coupled with maximum-likelihood classification have improved the identification

and extraction of water bodies and increased the precision with an overall accuracy of 97%

(Frazier et al. 2000). Landsat TM is unable to penetrate through think clouds and dense

canopy resulting in an underestimation of flooded areas. The fusion of satellite imagery

with digital elevation model (DEM) data has led to the imporvement of flood extent

detection under densely vegetated regions. (Wang et al. 2002). Furthermore, the Advanced

Very High Resolution Radiometer (AVHRR) imagery has been paired with DEM, drai-

nage networks, population density, and other GIS data to generate flood hazard maps.

Additionally, these hazard maps have been used to plan new infrastractures with consid-

eration for potential flood damage (Islam and Sado 2002). This allows for better identi-

fication and understanding of water depth and comparison of damage between multiple

regions.

While these techniques work well when proper data are available, satellite data, as

previously mentioned, are not always present or may only provide partial or incomplete

coverage of disaster areas. Thus, despite the massive quantities of data available, gaps in

coverage are often present due to satellite revisit time limitations, cloud cover, vegetation

canopy, and other factors that hinder the observation of flooded areas. For these reasons, it

is crucial to develop new techniques in order to produce timely flood assessments before,

during, and after an event.

Accurate and actionable damage assessment requires integrated information from many

different sources. A major concern for emergency management strategies is the availability

of reliable and accurate hazard maps. The presence of accurate mapping can greatly assist a

respondent’s decision-making process regarding the direction of aid to areas with the

greatest need. Several integrated approaches of remote sensing with GIS have led to better

management strategies, more accurate flood hazard mapping, and flood risk assessment

(Hadjimitsis 2007; Lamovec et al. 2013; Schnebele et al. 2014a; Cervone et al. 2016).

The integration of information extracted through non-authoritative and remote sens-

ing datasets coupled with other datasets provides tremendous potential for identification,

monitoring, and assessment of disasters. For instance, crowdsourced photographs and

volunteered geographic data were fused using geo-statistical interpolation to create an
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estimation of flood damage in New York City after hurricane Sandy on October 2012

(Schnebele and Cervone 2013; Schnebele et al. 2014b). During the large fire series that

took place in Southern California from July 2007 to May 2009, local residents shared

observations using social media outlets such as Flickr or Twitter, local news Web sites, and

Google maps as a way to localize the information they contributed (Goodchild and

Glennon 2010).

Civil Air Patrol (CAP) imagery is one data source available to augment the use

of satellite remote sensing. The CAP is a congressionally funded, nonprofit corporation

functioning as an auxiliary to the United States Air Force. The CAP conducts a variety of

missions in support of federal, state, local, and non-governmental entities, including search

and rescue, disaster relief support, and aerial reconnaissance for homeland security.1

However, working with such imagery poses challenges because the data are usually col-

lected using conventional digital cameras that only capture information in visible light.

Therefore, each image contains only three spectral channels in red-green-blue (RGB) color

space. This coarse sampling of the visible spectrum limits the identification and classifi-

cation of pixels performed on RGB imagery making it difficult to extract features.

This is particularly true in the CAP data used in this study because water has very

different signatures in the images. These variations are due to different collection times,

orientation, body of water observed (e.g. river vs lake vs flooded urban area). The dif-

ferences occur both in the spectral characteristics of the water pixels and the geometrical

signature of the water areas. On the contrary, advanced multispectral sensors available

through various remote sensing platforms are structured to collect data in different parts of

the electromagnetic (EM) spectrum usually ranging from ultraviolet (UV) to emissive

infrared (IR). CAP images range from oblique to rooftop images, and therefore, the

methodology can be applicable to both cases as shown by Cervone et al. (2016).

This work addresses this technical challenge with a new computational methodology

based on the use of artificial intelligence and machine learning classification algorithms to

automatically identify water pixels in CAP imagery associated with the 2013 Boulder, CO

floods. More specifically, it proposes a multi-strategy approach based on maximum like-

lihood and supervised machine learning classification coupled with wavelet transforma-

tions. The novelty of this approach lies in the use of freely available data documenting

flooding and damage in real time in order to draw an effective, integrated strategy for the

use of CAP imagery and satellite remote sensing in case of emergencies. An additional

benefit of the current research is that the source code and executable to perform the water

extraction are released free of charge. While several computer vision algorithms have been

published to perform related feature extraction, their implementations are sometimes not

readily available, or might need to be modified to work with CAP imagery.

1.1 Related work in image classification

The synoptic, repetitive nature of satellite remote sensing data coupled with GIS data has

allowed response teams and specialists to monitor the progression of a flood event in near

real time (Vijayaraghavan et al. 2012). However, satellite remote sensing technologies do

not always provide clear and complete data coverage of an area. In the absence of satellite

imagery and NIR information, water identification and extraction can be derived from

standard RGB images taken by airplanes, or by using the emerging availability of

Unmanned Aerial Vehicle (UAVs). Feature identification in images is an active subject in

1 http://www.gocivilairpatrol.com.
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the computer vision community. Two main approaches are being investigated: pixel based

and object based. In pixel based analysis, the characteristics of the individual pixels are

used, while in object based the image is transformed into a series of semantic concepts.

1.2 Pixel based image analysis

Several methods have been proposed to semantically segment RGB images using multiple

scales (Mallat 1989; Csurka and Perronnin 2011; Pantofaru et al. 2008; Shotton et al.

2006). Most multiscale segmentation methods combine two principles: first, a recognition

process that assigns each pixel to a class and second, a regularization process that groups

pixels together which are contained in the same feature (Salamati et al. 2014).

RGB imagery can be decomposed into a family of derived images. Due to the flexibility

to explore fine details from high- and medium-frequency subdivisions of an image, wavelet

decomposition has gained popular applications in the field of signal and image processing

and classification (Baaziz et al. 2010; Li et al. 2014; Huang and Aviyente 2008). Wavelet

sub-bands of texture for automatic clustering of image classification and segmentation

have also been used (Arivazhagan and Ganesan 2003; Aujol et al. 2003). By using a

wavelet transformation algorithm and analyzing the textures characterized by the energy of

wavelet coefficients based on each sub-band decomposition, a supervised classification

model can then be applied to classify the images. The algorithm produces segmentations of

an entire image according to prior known texture parameters by using level sets created

according to wavelet coefficients and the interaction between each other (Aujol et al.

2003). In more recent research, wavelet transforms have been investigated for multiscale

time–frequency signal analysis. For example, the integration of wavelet-based feature with

pixel-wise-based classification has been used to improve the classification performance in

noise-corrupted environments for hyperspectral data (Li et al. 2014). Additionally, a

wavelet transformation and a k-means algorithm are used as an approach for image

retrieval by combining color and texture information of features (Bai et al. 2012).

Texture is an important feature for the analysis of many types of images and may be

seen in all images whether obtained from an aircraft or satellite platform. Various

approaches have been suggested for texture retrieval and mainly vary by the method used

for extracting textural features. Texture extraction methods may be defined into four

categories: (1) statistical, (2) structural, (3) model based, and (4) transformation based

(Materka and Strzelecki 1998; Bharati et al. 2004). Transformation methods of texture

analysis such as Fourier, Gabor, and wavelet transforms represent an image in a space

whose coordinate system has an interpretation that is closely related to the characteristics

of a texture (such as frequency or size) (Materka and Strzelecki 1998). Methods based on

the Fourier transform perform poorly in practice due to its lack of spatial localization

(Skarbnik 2009). Gabor filters provide means for better spatial localization However, the

use is limited in practice because there is usually no single filter resolution at which one

can localize a spatial structure in natural textures. This is known as the filter bank design,

which involves the selection of a suitable number of filters at different orientations and

frequencies (Bianconi and Fernández 2007). Compared to the Gabor transform, the wavelet

transforms presents several advantages: varying the spatial resolution allows it to represent

textures at the most suitable scale, there is a wide range of choices for the mother wavelet

function, each providing advantages for texture analysis in a specific application (Materka

and Strzelecki 1998).

Additional methods using filters have been applied for feature extraction and classifi-

cation. Gabor filters are used as a texture extraction method, and classification is performed
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with maximum likelihood for the classification of aerial and satellite digital images (Recio

et al. 2005). A wavelet-based texture retrieval using generalized Gaussian density and

Kullback Leibler distance has also been presented (Do and Vetterli 2002). A color texture

image classification based on hue–saturation–value (HSV) color space wavelet transform

and motif co-occurrence matrix for feature extraction has also been used (Chang et al.

2010). A support vector machine (SVM) is then applied to learn and classify feature classes

on texture images based on extracted information. Another technique uses wavelet coef-

ficients in low pass bands with a structure-based neural network to develop a supervised

classification based on the distribution of histograms from wavelet coefficients (Zou et al.

2008).

1.3 Object based image analysis (OBIA)

Object based image analysis (OBIA) is a semi-automated method that uses groups of pixels

that represent concepts (e.g. buildings, trees) to classify objects from high-resolution

remotely sensed data. In an OBIA, the outcome of segmentation is directly related to

several adjustable criteria such as scale, color, and shape as defined by the user. In par-

ticular, the scale and shape parameters are critical as a large scale leads to bigger objects

being classified and a small scale may not be representative. Adjusting the shape parameter

also affects the overall fusion value as it is computed based on both spectral heterogeneity

and shape heterogeneity. The result of OBIA is also dependent on additional metrics such

as measures of texture, length, and spatial relationship to other near and far neighboring

objects.

OBIA software fuses the disparate datasets, usually Light Detection and Ranging

(LiDAR) and high-resolution multispectral data, and then classifies objects based on

spectral and geometric characteristics. Mueller et al. (2004) employed an object based

segmentation with special focus on shape information to extract large man-made objects,

mainly agriculture fields in high-resolution panchromatic data. It is important to note that

there is no standardized or widely accepted method available to determine the optimal

scale for all types of applications, areas with different environmental and biophysical

conditions, and different kinds of remotely sensed images (Myint et al. 2011).

OBIA algorithms make extensive use of image segmentation to split an unclassified

image into separate regions (Im et al. 2008; Lee and Warner 2006; Stow et al. 2008). From

an algorithmic perspective, it is generally divided into four categories: (1) point based, (2)

edge based, (3) region based, and (4) combined (Schiewe 2002). A series of studies have

exhibited methods for comparing different techniques of sample segment objects against

corresponding reference objects as well as for assessing segmentation accuracy (Weidner

2008; Winter 2000). Using trial-and-error tests along with an index called the ‘comparison

index,’ Möller et al. (2007) developed an approach to perform a segmentation scale that is

close to optimal. The approach used a segmentation procedure called fractal net evolution

approach, implemented in the eCongnition software, to generate objects at different scales

(Baatz and Schäpe 2000).

There are several advantages and disadvantages of various segmentation approaches as

discussed by Muñoz et al. (2003), there has yet to be a segmentation algorithm that

integrates regions and boundary information and thus research is still needed in the

computer vision community and its applications. OBIA algorithms work best with mul-

tispectral imagery because the algorithm relies heavily on the spectral signature of the

objects to be classified. Furthermore, OBIA relies heavily on distinctive geometrical

characteristics of the objects (e.g. homes tend to be rectangular and of comperable size). In
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our case, the spectral information is very limited, and water areas do not have pre-

dictable geometric patterns.

2 Case study: 2013 boulder flood

This work analyzes data for the 2013 flood that occurred in Colorado, particularly affecting

Boulder and the neighboring counties. Boulder is located near the foothills of the Rocky

Mountains approximately 50 km northwest from Denver. This unique location has made

Boulder the number one flash flood community in the state of Colorado as major flash

floods have developed in recent years (Pittman 2014). In the last 15 years alone, the City of

Boulder has spent more than $45 million dollars on infrastructure resilient to floods and

sustainablility projects (Pittman 2014). However, the 2013 flood was not the flash flood

that officials had been preparing for. It was an unprecedented event where Colorado

received a year’s worth of precipitation in only eight days, exceeding 45 cm of rain.

The 2013 Colorado flood propagated quickly and with little warning. A catastrophic

storm system trapped moist monsoonal air over the Colorado Rocky Mountain Front Range

producing heavy rainfall over a one week period. From September 11, 2013, to September

15, 2013, a record-breaking precipitation occurred along the Colorado Front Range

impacting 18 counties and resulted in severe floods throughout many parts of Colorado

from Larimer and Weld Counties southward to El Paso County. Boulder County was worst

hit with 25 cm of rain on September 12 and up to 43 cm by September 15, 2013. With

precipitation exceeding 50 cm in parts of Boulder County, the area experienced catas-

trophic flooding, property destruction totaling over $2 billion in damage, and a tragic loss

of life. The effects of the storm were not only felt in Colorado. Heavy precipitation and

flooding occurred in several neighboring states such as Nebraska, New Mexico, and

Wyoming (Gochis et al. 2014).

2.1 CAP data

Civil Air Patrol data were downloaded from the US Geological Survey Hazards Data

Distribution System Explorer (USGS HDDS system2). The HDDS is a unique Web-based

interface that enables users to search for satellite, aerial imagery, and other geospatial

datasets available in near real time. The Web portal is designed to assist in disaster

response by providing imagery and documents acquired before and after an event.

A series of Unix Bash and Python commands were used to automatically select and

download a total of 6444 images. Images covered the flooding period of September 14–22,

2013. Each image contains metadata providing information on the camera type used to

capture the image and several spatiotemporal characteristics (e.g. date/time of acquisition,

lat/long coordinates). Based on this metadata, Table 1 shows the number of CAP images

collected per day over Boulder County.

The image classification was performed using the RStudio3 parallel package using six

cores on a MacPro. Because each image can be analyzed independently, the proposed

solution is ‘embarrassingly parallelizable’ and thus it is exceptionally well suited for multi-

core/multi-node architectures.

2 http://hdds.usgs.gov.
3 http://www.rstudio.com.
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3 Methodology

The goal is to classify each CAP image in the dataset automatically with minimal expert

supervision and input. The methodology consists of three main steps:

a. Manual: Defining a very small, selected number of training regions as examples and

counterexamples of flooded areas.

b. Automatic: Multiple classifiers are run in parallel to build a model describing water

and non-water regions. Each classifier is applied either on the original images or on a

transformation and classifies all pixels in each image into either water or non-water

pixels; thus, no pixels remain unclassified. This extracts relevant information such as

texture or homogeneity. Among the possible transformations, wavelet decomposition

proved to be a particularly effective method. Wavelets are applied to the grayscale

representation of the original RGB images, and the computed wavelet scale

coefficients are used as training regions.

c. Automatic: Each pixel classification in the images is performed by combining the

results of the models. A measure of confidence is computed by ranking how many of

the models classified a pixel as water.

d. After each image is classified, a despeckling filter is applied to remove small defects

that may be present in an image. This is commonly applied to RGB images to remove

color channel noise (Fig. 1).

This approach utilizes freely available CAP data to draw an effective integrated strategy

for near real-time damage assessment using only RGB information.

3.1 Wavelet transformation

Wavelet transformation is a mathematical function and signal processing technique that

helps localize data by decomposing a signal into different frequency sub-bands.

For any given real-valued function / with zero average
R1
�1 /ðtÞdt ¼ 0, let

Wf ðu; sÞ ¼
Z

f ðtÞ
ffiffi
ð

p
sÞ
/

t � u

s

� �
dt ð1Þ

be the real continuous wavelet transform of a function f. Since / has zero mean, the

previous integral measures the variation of f in a neighborhood of time (position) u of size

proportional to the so-called scale factor s[ 0. There are several other wavelet functions /
that can be used for the transformation. The Haar wavelet was chosen because of its

simplicity and computational efficiency (Amolins et al. 2007; Hein and Feklistova 2011).

The wavelet transformation technique can be applied to a variety of fundamental signal

processing tasks such as enhancing images and sounds recordings by removing noise or for

Table 1 Total number of CAP aerial images acquired between September 14, 2013, and September 22,
2013

Saturday Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total
9/14 9/15 9/16 9/17 9/18 9/19 9/20 9/21 9/22

1788 52 1852 1020 82 705 110 0 834 6444
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data reduction by compression (e.g. jpeg compression) (Baaziz et al. 2010). When

applying a wavelet transformation, data are compressed and transformed based on multi-

resolution analysis (Huang and Aviyente 2008). This consists of the decomposition of an

image into subimages containing different fractions of signal value known as wavelet

coefficients (Fig. 2).

This preserves the relative distance between objects at different levels and allows

natural clusters in the data to be easily identified. In practice, the transformation divides the

data equally at each iteration (Han et al. 2006). First, it applies a data smoothing technique

such as sum or weighted average, and then, it performs a weighted difference, which

allows the details of features to be identified. The output results in a smoothed or low-

frequency version of the original data by removing the high-frequency information. This

procedure occurs recursively by applying the transformation on the image resulting from

the previous iteration and continues until a termination condition is met (Arivazhagan and

Ganesan 2003; Amolins et al. 2007).

3.2 Supervised image classification

Supervised classification is an operation that uses an inductive reasoning process where a

set of rules are learned based on labeled pixels in order to classify new unlabeled pixels

(Dougherty 2012). This method consists of two steps: first, the user manually selects a

series of examples and counterexamples to form the training sets. The user tunes the model

on the training data using a machine learning algorithm to perform a correlation task. As

shown in Fig. 3, these regions represent areas for each class of interest to be classified (e.g.

water vs not water).

Fig. 1 Methodology flowchart: notice that wavelet transformation is applied to all the images regardless of
their use in the main classification as training or testing
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Second, the classification algorithms use the positive training samples to create a

generalization of spectral and wavelet coefficient properties for each of the classes. This

generalization contains discriminant characteristics of the features of the input data, and

they are used to classify new pixels the model has never seen before into one of the

classification classes.

Supervised classification has the advantage of automatically generating models used for

classifying thousand of images from a very limited number of training regions. This allows

human intervention to be kept to a minimum (e.g. identification of 40 regions in a set of ten

images). However, the classification of water pixel is not trivial. In fact, color information

alone is not sufficient to discriminate between classes, as water pixels vary in RGB color as

Fig. 2 Illustration of the wavelet transformation process. The original image is displayed in the upper left
quadrant (a). The other three quadrants represent the decomposition of the wavelet transformation. The first
wavelet coefficient is represented by figure (b), the second wavelet coefficient is shown in figure (c), and
third wavelet coefficient in figure (d)
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shades of blue, green, and brown. Furthermore, soil can have similar color characteristics,

which would lead to misclassification if only regression algorithms were used.

Thus, because supervised algorithms learn from features present in all images (e.g. color

or wavelet coefficient), the learned models can be applied to images that were not part of

the original training set.

• Decision Trees

Decision trees use a divide and conquer paradigm to generate a hierarchical set of

attribute-value decisions to discriminate between pixel classes defined in a set of

training examples and counterexamples (Breiman et al. 1984; Quinlan 1993; Steinberg

and Colla 1995). This training set is composed of ‘labeled’ data, where each element

represents a pixel which has been previously classified into one of the output class (e.g.

water or non-water). Each element has two parts: first, the output class and second, a

vector of values representing the characteristics for the pixel, such as RGB values or

wavelet coefficients.

The learned decision tree is then applied to all the unseen (unlabeled) data, which are

automatically classified into one of the output classes. Starting from the root, a

consecutive set of comparisons are made between a pixel and the learned decision tree

to determine which pixel belongs in each class.

The main advantages of decision trees over other classification algorithms include the

capability for highly dimensional data, resilience to noise, and computational efficiency

to learn the tree and apply it to classify new examples. They also have very few input

parameters which make them easier to optimize for a given problem. This work uses

the regression tree library for R statistical language 1.0.36 package.

Fig. 3 Sample image used to select examples and counterexamples. Rectangles in black represent water
(positives) while the red rectangles represent regions without water (negative)
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• Maximum Likelihood

Maximum likelihood classification (MLC) is one of the most commonly used

supervised classification techniques. MLC builds a statistical model for each class

summarizing the multi-dimensional mean and variance for each of the attributes. Pixel

classification is made by assigning individual pixels to the class that minimizes the

Euclidean distance between the values of the pixel and the MLC models. The

computation of the models is based on the assumption that both the training data and

classes display multivariate normal frequency distribution (Campbell and Wynne

2011).

3.3 Classification of pixels using learned models

Supervised algorithms, as described in Sect. 3.2, utilize the training set images in order to

learn the models. The learned models are then applied to all 6424 images that are not part

of the original training set. This task is fully automated and requires no additional human

supervision. The classification of the entire dataset is geographically represented with a

map showing areas most likely affected.

4 Results

4.1 Model learning

In order to test and validate the hypothesis that CAP imagery can provide actionable

knowledge during flood emergencies, the proposed methodology is applied to all the

available data described in Sect. 2.1.

The first step consists in learning a model that employs both decision tree and maximum

likelihood classifiers. A small set of regions (44 for water examples and 40 as non-water

counterexamples) is manually chosen from 20 randomly selected CAP images. Selecting

representative training samples is a key step for supervised classification. The identified

regions are homogeneous, rectangular in shape, and vary in size.

4.2 Validation

The learned model is validated on a small sample of manually selected pixels to assess

prediction accuracy. In this work, both classifiers are weighted equally. Thus, an unseen

pixel is classified as 100% water if both classifiers match, 50% if only one classifier

matches, and 0% when neither of the classifiers match. Figure 4 depicts the results using

ternary plots. A ternary plot shows the relationship between three variables on three

separate axes, under the assumption that the sum of the variables is equal to 1 for all

examples.

Figure 4 shows two ternary plots displaying the results of the tests performed for areas

labeled as containing water (Fig. 4a) or not containing water (Fig. 4b). Each point rep-

resents one of the areas used for the tests. The axis shows the percentage of pixels in the

areas classified as no water NW (left vertex), water by a single classifier C1 (top vertex), or

C2 (right vertex) water by both classifiers. The three vertices of the ternary plots corre-

spond to C1, C2, and NW, and each represents 100% accuracy in the classification of

pixels. Each of the points represents the training sets.
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The left graph displays how accurately the classifiers predict water when applied only to

the training regions where water was present (positives regions, a.k.a. examples). Ideally,

all regions would be classified in the lower right (C2) as this indicates that both models

classify these areas as water only pixels. While the best results are achieved by points lying

exactly on the right vertex, any classification along the right base (C2) is acceptable be-

cause it indicates that the water areas are identified as water by at least one classifier.

Figure 4a shows that the classifiers have a high accuracy because most water areas are

correctly classified. Greater than half of all the positive training regions were able to be

correctly classified with more than 85% accuracy. Twelve training regions were classified

as water by at least one classifier and only one region was classified incorrectly.

Figure 4b shows the accuracy of the classifiers when applied to the training regions in

which water was not present (negative regions, a.k.a. counterexamples). In this case, the

ideal classification lies on the left vertex (NW) because it represents that neither of the

models identified water and agree that water is not present inside the training regions.

While it very seldom happens that both classifiers identify the non-water areas as water, it

is more common that one of the two classifiers does. This indicates that although the

methodology is generally sound, there is an overall uncertainty associated with the clas-

sification of water by a single classifier.

4.3 Image classification

Following the performance assessment, the learned model is applied to classify all unla-

beled pixels in the remaining images. The result of the classification of each image is a

discrete output indicating the presence or absence of water within each image. Further-

more, because multiple classifiers are employed, a measure of confidence can be derived

that is proportional to the cumulative number of classifications. Though only two classi-

fiers are used in the current tests, the methodology can scale up to including a much larger

number of classifiers which will lead to a finer measure of confidence.
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Fig. 4 Ternary plot showing the results of the tests performed for areas labeled as containing water (a) or
not containing water (b). Each point represents one of the areas used for the tests. The axes show the
percentage of pixels in the areas classified as no water (left vertex), water by a single classifier (top vertex),
or water by both classifiers (right vertex)
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Figure 5 shows a summary of the classification of all 6444 images using the described

methodology. The three vertices in the figure represent the percentage of no water (left

vertex), water classified by single classifier (top vertex), or water classified by both clas-

sifiers (right vertex). Each point inside the triangle shows how each of the 6444 images is

classified as containing a percentage of pixels classified as no water, water by a single

classifier, or water by both classifiers. Therefore, an image can be classified as 100% water

by either model, C1 or C2, or no water (NW) present at all. For example, if a point were to

be selected near the center of the graph at an intersection of RGB, it would represent a ratio

of the three components (e.g. 40% blue, 40% red, 20% green). The density, each point

representing an individual CAP image, is indicated by a choropleth gradient. The higher

density of cases along the NW-C1 axis indicates that most images had a mix of no water or

water classified by a single classifier. Relatively few images were classified as containing

water by both classifiers. This is consistent with the observation that most images in the

data contained a very modest amount of water (e.g. vegetated areas).

Each image is assessed based on the amount of water present. In aggregation, the

amount of water present in a classified image can be geographically represented to generate

a damage assessment map (Fig. 6). The situational awareness map provides an overview of

the percent of pixels classified by both classifiers. The map shows the classification for the

overall area in which images were available, including the case study area of Boulder

County.

Points represented in dark blue depict images containing high value of pixels classified

as water. For example, a responder may observe a large cluster of images classified with

greater than 40% water north from the city of Denver. From the visual representation of
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Fig. 5 Ternary plot showing the overall classification of all 6444 images. Each of the points represents an
image. The axis indicates percentage of the image classified as no water (left vertex), or water by a single
classifier (top vertex), or water by both classifiers (right vertex)
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water presence/absence, emergency responders can quickly assess the areas that are likely

to contain flooding damage and require immediate assistance. This knowledge can be used

in near real time for situational awareness and to prioritize available resources.

Sample results of accurate water classification in RGB images are shown in Fig. 7.

Here, the models are able to identify the presence of water regardless of the different color

shades of the water. Furthermore, a clear contrast is shown between water areas that are

continuously present throughout time and areas identified as water due to the damage

caused by the Colorado flood. A distinction is made between roads and water allowing

responders to have a complete understanding of road conditions.

Throughout the research process, multiple issues with the classification of RGB imagery

were identified. These include the presence of clouds, shadows from physical features, and

the acquisition angle. Sample results of a less accurate CAP classification are displayed in

Fig. 8. Although the models are able to accurately identify areas where water is present, a

high amount of uncertainty is also present. On the top images, one of the classifiers

identifies forested areas as potential water pixels (teal), while the image below shows the

misclassification of water due to the presence of shadows.

Overall, the proposed methodology adequately classified water regions providing a

general idea of damaged or flooded regions within an image. Results show that this

methodology is promising for classifying water and calculating damage assessment in

RGB images. As shown by Fig. 6, a situational awareness map can be generated to provide

Fig. 6 Damage assessment map based on the classification of all 6,444 images for Boulder and surrounding
counties. Each image is represented with a circle ranging from light to dark blue. Light blue indicates a low
number of water classified pixels, and dark blue indicates a high number of water classified pixels
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Fig. 7 Sample classification of water pixels by both classifiers (blue) or by a single classifier (teal). The
algorithm was able to correctly classify most of the water areas

Fig. 8 Sample classification of water pixels by both classifiers (blue) or by a single classifier (teal). The
algorithm was not able to correctly classify all of the water areas
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an overview of the percent of water coverage in each CAP image and, in turn, depict

regions where a high amount of water or damage may be present.

4.4 Analysis of images with different shadows, pixel intensities, and color

The ability to correctly classify unseen images depends both on the quality of the training

areas and the ability of the algorithms to learn the attribute-value relations that characterize

water pixels. Of particular interest is the classification of images that are significantly

different from the training set, which have different shadows, pixel intensity, and colors.

Figure 9 shows two set of classified images. Figure 9a and c is the original RGB CAP, and

Fig. 9b and d is the same images classified according to the learned model.

The image classification shows that the algorithm is able to correctly identify water

bodies in both scenes, albeit with some pixel misclassification. Figure 9b shows that the

algorithm misinterprets the cloud shadows for water pixels (top right part of the image),

similarly to what happened in Fig. 8. Figure 9a and c shows how the methodology per-

forms well on rare images that are very different than those used for training. Specifically,

these images are very dark; however, the difference in pixel intensity does not cause water

misclassification. The wavelet transformation is able to extract texture information

regardless of the color intensity, making the methodology resilient and able to classify data

acquired under different conditions.

Fig. 9 Selected CAP images used to represent the methodology on different images with respect to
shadows, pixel intensities, and color. Images (a) and (c) are the original RGB CAP, and images (b) and (d)
are the classified CAP
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4.5 Quantitative assessment of the results

The methodology was assessed quantitatively using a set of 11 scenes acquired in

Bloomfield county, located NE of Boulder in the center of Fig. 6. Using the selected set,

the intersection of water between the original RGB CAP image and classified image was

calculated. The water pixels present in the original image (control pixels) were manually

identified using visual interpretation and compared with the number of water pixels

classified by the algorithm (classified pixels). The intersection (intersect pixels) is calcu-

lated as the common area between control and classified pixels. Additionally, the number

of pixels misclassified as water (false positives) as well as the number of water pixels not

identified (false negative) are computed. The total accuracy is computed as the ratio

between the number of intersecting pixels and the control pixels in the RGB CAP images.

The overall accuracy for the assessment over the 11 scenes is 67%, with values ranging

between 33% and 98%. In most cases, the accuracy is higher than 67% (scene 6–11), and

Fig. 10 Selected CAP images used to represent low, medium, and high accuracy of the algorithm. Images
(a), (c), and (e) are the original RGB CAP. Images (b), (d), and (f) are the same images representing the
control pixels (dark blue), classified pixels (purple), and the intersection of the two (teal)
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the overall average is reduced by the single low score of 33%. Therefore, it can be

concluded that the initial assessment shown in Fig. 6, suggesting that the set of 11 scenes

acquired in Bloomfield county have a high percentage of water pixels, is true. Therefore,

this map could have given an accurate initial assessment of regions with a higher amount of

detected water. Overlaying this map with additional data of natural water bodies can lead

to an assessment of which areas are most likely to have been impacted by the flood.

Three scenes were selected from the sample of 11 to represent instances of low,

medium, and high accuracy as shown in Fig. 10. Figure 10a, c, and e is the original CAP

images in RGB color. Each scene has a difference in color intensity, percentage of water

pixels, and texture. Figure 10b, d, and f are CAP scenes with water shown with different

colors. Dark blue represents the manually selected water control pixels (X), purple the

pixels classified as water by the algorithm (Y), and teal the intersection (Z) of control and

classified pixels (X \ Y).

Out of the 6444 images that were used for this work many were images that contained

minimal water and large vegetated areas. Figure 10 is an overall representation of the CAP

images which may have a small amount of water, images in which the ground and water

have the same color and contain a high amount of water, as well as rare images that have

high pixel intensity where it is very difficult to distinguish water from the ground. Fig-

ure 10a and b show scene 1 listed on Table 2 with an overall accuracy of 33%. Figure 10c

and d represents CAP images that have a relatively high percentage of water present. In

this example, Fig. 10d represents a case with an overall estimated accuracy of 59% (scene

5) on Table 2. Lastly, Fig. 10e and f represents CAP images that have a relatively high

percentage of water and dark color intensity. Figure 10f represents the last case, scene 11

from Table 2 with an overall estimated accuracy of 98%.

In Fig. 10b, there are areas at the top left and bottom right corners in which the

algorithm fails to correctly classify water pixels. However, it correctly identifies the river

located at the top right corner and the small accumulation of water in the center of the

image. Although the algorithm overestimates pixels as water, it is still able to classify a fair

portion of the control pixels. Several of the misclassified pixels are in areas that are

Table 2 Predictive accuracy assessment for 11 selected scenes

Scene Control
pixels (X)

Classified
pixels (Y)

Intersect
pixels (Z)

False
positives
(Y–Z)

False
negatives
(X–Z)

Total accuracy
(Z/X) (%)

1 5976 7275 1987 5288 3989 33

2 40,574 71,207 20,988 50,219 19,586 52

3 58,205 48,068 32,578 15,490 25,627 56

4 52,708 51,731 30,245 21,486 22,463 57

5 60,998 41,825 35,813 6012 25,185 59

6 65,972 62,367 45,821 16,546 20,151 69

7 61,170 51,335 43,242 8093 17,928 71

8 56,026 48,840 41,315 7525 14,711 74

9 49,731 81,247 43,316 37,931 6415 87

10 66,674 76,496 58,426 18,070 8248 88

11 74,257 104,948 72,564 32,384 1693 98

Average accuracy 67
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impossible to assess visually, and where water may indeed be present. In Fig. 10d, the

classifier performs well at identifying water versus areas that have been eroded but are

relatively the same in color, most likely because of the texture information extracted by the

wavelet transformation. A similar example is shown in Fig. 10f where the algorithm

correctly identifies nearly all of the manually identified control pixels.

There are cases when the algorithm overestimates water pixels such as in the lower left

corner of Fig. 10b and the center of Fig. 10f. There are also cases when it underestimates

and fails to identify water pixels such as in Fig. 10d. It is important to note that the goal of

the algorithm is not to correctly identify every pixel in the image, but rather to generate a

very quick automatic initial assessment with minimal expert supervision.

5 Conclusion

This study illustrates how freely available aerial imagery can aid in filling gaps commonly

associated with traditional remote sensing techniques. The dependence of water features

identified and extracted from RGB images using multiple classifiers shows a promising

technique. The models were validated on a small test case to assess the quality of the

learned models. This was accomplished by utilizing a selection of regions as training

examples of flooded and non-flooded areas. Multiple classifiers were run in parallel to

create a model describing water vs non-water regions. Furthermore, because multiple

classifiers are employed, a measure of uncertainty can be derived from the number of

classifiers that identify specific pixels as containing water. Wavelet transforms were used

to compute scale coefficients and complement the RGB color space of the original images.

The ability to perform a quick and accurate analysis of flood conditions is paramount to

aid disaster relief operations. Although the proposed methodology generates classifications

which might include errors in a single image, the high spatial distribution of CAP images

leads to a generally good first damage assessment, as shown in Fig. 6. Therefore, while

water identification in individual images can be incorrect, the errors are generally small

when aggregated over several thousand images.

This methodology improves upon current state-of-the-art approaches due to its use of

freely available, but difficult-to-use, data sources in order to perform a more accurate and

timely analysis of flood conditions. The combination of wavelet transformations and the

use of multiple machine learning techniques provides a more accurate and robust image

classification. This approach is also broadly applicable to problems outside of flood

classification. It is expected that this method can be applied to the identification of fire burn

scars or agricultural transitions in addition to this study case.
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Recio JAR, Fernández LAR, Fernández-Sarriá A (2005) Use of gabor filters for texture classification of

digital images. Fı́sica de la Tierra 17:47
Sakamoto T, Van Nguyen N, Kotera A, Ohno H, Ishitsuka N, Yokozawa M (2007) Detecting temporal

changes in the extent of annual flooding within the cambodia and the vietnamese mekong delta from
modis time-series imagery. Remote Sens Environ 109(3):295–313
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