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Fusing Heterogeneous Data: A Case for
Remote Sensing and Social Media

Han Wang , Erik Skau , Hamid Krim , and Guido Cervone

Abstract— Data heterogeneity can pose a great challenge to
process and systematically fuse low-level data from different
modalities with no recourse to heuristics and manual adjustments
and refinements. In this paper, a new methodology is introduced
for the fusion of measured data for detecting and predicting
weather-driven natural hazards. The proposed research intro-
duces a robust theoretical and algorithmic framework for the
fusion of heterogeneous data in near real time. We establish
a flexible information-based fusion framework with a target
optimality criterion of choice, which for illustration, is specialized
to a maximum entropy principle and a least effort principle
for semisupervised learning with noisy labels. We develop a
methodology to account for multimodality data and a solution
for addressing inherent sensor limitations. In our case study of
interest, namely, that of flood density estimation, we further show
that by fusing remote sensing and social media data, we can
develop well founded and actionable flood maps. This capability
is valuable in situations where environmental hazards, such as
hurricanes or severe weather, affect very large areas. Relative
to the state of the art working with such data, our proposed
information-theoretic solution is principled and systematic, while
offering a joint exploitation of any set of heterogeneous sensor
modalities with minimally assuming priors. This flexibility is
coupled with the ability to quantitatively and clearly state the
fusion principles with very reasonable computational costs. The
proposed method is tested and substantiated with the multimodal-
ity data of a 2013 Boulder Colorado flood event.

Index Terms— Least effort principle, maximum entropy mod-
els, optimal transport, remote sensing, social media, volunteering
labels.

I. INTRODUCTION

FUSION of information from different sensors has long
been of interest in Data Science, even if a comprehensive

and sound formalism has eluded researchers on account of
the complexity of meshing data from different and often
incompatible sensor modalities. The readily available sensors
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and their ubiquitous deployment have further enriched the list
of so-called Big Data problems well known to be of central
research interest.

As noted earlier, information fusion is of broad interest
and, as we further elaborate in the following, cuts across a
diverse body of disciplines. In short, interest in fusion often
arises in inference problems with a limited number of features
obtained from a single sensor, and hence, unable to fully
characterize the physical phenomenon at hand. Many types of
fusion have been considered proceeding from lower to higher
level data processing, e.g., sensor/data level (see [1]), feature
level (see [2]), and knowledge/decision level (see [3]).

As a taxonomy of fusion methods, Dasarathy [4] dis-
tinguishes five different levels/classes of fusion, including
Data In–Data Out, Data In–Feature Out, Feature In–Feature
Out, Feature In–Decision Out (FEI-DEO), and Decision
In–Decision Out. We note that our proposed work addresses
the fusion of heterogeneous data with a goal/outcome of higher
level decision-making. While our work appears to follow
FEI–DEO, it is closer to Data In–Decision Out (DAI–DEO)-
level fusion, and is of more practical interest, given that the
features are not readily gleaned from the senor measurements.

Applications in the fusion of remote sensing data are many,
and include those of environmental nature such as pollution
detection/assessment and weather-related prediction which is
of interest here. In density estimation of certain hazard events
based on the spatially distributed data, it is common to use
a diverse set of sensors, as information from a single sensor
is largely insufficient and/or nonrepresentative of the phenom-
enon of interest. While the current technology may provide
a satellite imagery of high spatial and temporal resolution,
its quality may fall short on account of a variety of factors
such as satellite trajectories (sampling) and atmospheric inter-
ference, or simply limited amounts of data. Adverse weather
conditions, for instance, on account of their possible duration,
could additionally lead to poor quality of the acquired satellite
imagery. All such limitations are often mitigated by incorpo-
rating additional information sources which, when combined
with limited resources on the ground, yield an effective fusion
strategy with aerial and remote sensing data.

As a result, social media can become an inference empow-
erment sensor by volunteering geotagged labels (contex-
tual information) of events of interest. Twitter, for instance,
has increasingly become an abundant and valuable source
of information—an average of around 6000 tweets tweeted
every second according to the twitter statistics, among which
any tweeted contents relevant to the subject of interest could
be considered for fusion. Due to the notoriously noisy nature
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of social media, however—particularly twitter—caution should
be exercised in handling such information.

Given the prevalence of incomplete, redundant, or incom-
patible data, fusing heterogeneous sensing modalities is a
good motivation for a principled multimodality information
fusion formalism, and hence, forms our principal objective in
this paper. Our work herein, to the best of our knowledge, rep-
resents the first attempt to propose a reasonable and principled
formalism for such a goal.

Our proposed approach to formulate the fusion of heteroge-
neous data is fundamentally based on optimizing a functional
with constraints around data from many auxiliary sensing
modalities. The objective is a guiding principle or task-
motivated fusion criterion, with constraints tying the result
to the observed data. The challenge to a successful fusion
hinges on securing the integration of heterogeneous and even
incompatible data and their homogenization, followed by the
optimization to achieve the desired objective. Understanding
the essence of heterogeneity underlying the various data
modalities is crucial to a successful fusion. We also note that
other factors, such as domains for different data with their
associated statistics, if unaccounted for, may yield a biased
estimation, and hence, reduced fusion performance, as further
discussed later in this paper.

Our contribution to investigate a heterogeneous weather-
related fusion problem is cast as spatial density estimation
using imaging sensors and social media. To that end, and to
pursue a fusion-based robust density estimation, we establish
a framework based upon two simplified principles: the maxi-
mum entropy principle and the least effort principle. While
used in some applications [5], [6], the maximum entropy
principle has largely been considered in density estimation.
As demonstrated later in the sequel, this principle turns out to
be a very effective model to work with when a limited number
of positive labels and a reasonably large number of features are
available. We also show that the performance may be limited in
the presence of various noises given the generic (also flexible)
statement of the problem and the numerous modalities (e.g.,
Twitter data and its inherent bias-inducing nature). With such
noises and limited data, we consider the least effort principle,
where we apply an optimal transport technique [7] to the social
media data, which is “homogenized” as labels with an empiri-
cal distribution over the fusion space. Specifically, we apply a
transport strategy to establish a relationship between our noisy
data to priorly known data (e.g., in our case, 100-year history
flood zones) to alleviate the bias problem, as further elaborated
in the following. The flowchart of the our proposed fusion
method specialized to density estimation is shown for quick
reference in Fig. 1, and the technical details are deferred to
Section III.

Our proposed approach to the satellite imagery and
social media-based flood estimation was in part inspired
by Schnebele et al.’s work [8], and by the associated data
heterogeneity. In relation to other works having also exploited
social media in [9], our work here provides a more systematic
and robust fusion framework.

In comparison to the state of the art in heterogeneous sensor
fusion, our contributions in this paper include:

Fig. 1. Diagram illustrates the processing of data through homogenization
for a density estimation. Some data modalities are considered for empirical
distributions, leading to certain modified empirical distribution with a least
effort principle, while other data modalities are considered as constraints in
a maximum entropy model.

1) a mathematical framework for fusing heterogeneous data
modalities;

2) a successful showcase of our information-based opti-
mization fusion with remote sensing imagery and social
media data-based constraints;

3) a least effort principled strategy of relocating geoloca-
tional volunteering labels from social media to overcome
noisy and spatially biased label issues in the maximum
entropy model.

We should also note that the convexity of our formulation
makes our solution highly efficient, and lends significant
flexibility and effectiveness to many other applications, beyond
the flood estimation problem at hand.

The balance of the paper proceeds as follows. Section II
discusses much related work. Section III describes our data set
for fusion, and introduces our fusion framework, followed by
the specific fusion model applied to our data set. In Section IV,
we discuss our algorithmic issues, while in Section V, we dis-
cuss the experimental results of various optimization instances.
Finally we conclude in Section VI with the challenges and
work ahead.

II. RELATED WORKS

While the fusion literature is vast, it is often focused on a
specific application to facilitate the discussion of the fusion
problem formulation, and justify the selection of its different
attributes.

As mentioned earlier, our investigation herein is motivated
by the goal of developing a principled and systematic fusion
of heterogeneous sensor data. With an inferential task defined,
we will use social media together with other remote sensing
data to primarily focus on the study of a natural flooding event
in the continental U.S.
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A. Remote Sensing

Multiband and hyperspectral satellite images have actively
been exploited for various purposes including environment
monitoring and surveillance. For natural hazard extent
estimation, remote sensing data analysis has included
pixel-based segmentation [10], object-based analysis [11],
supervised learning with labeling collection and classifica-
tion [12], and so on. Good quality labels are, however, usually
hard to acquire and often require expert knowledge. The work
in [13] addressed noisy labels by proposing a generative model
and training a deep neural network based on the existing
maps. This unfortunately provided limited success, especially
in the presence of misregistration problems due to noisy data
(e.g., tweets collected during an associated event).

B. Social Media

In light of their ubiquitous emergence, social media increas-
ingly promise to be of great value even though associated
applications have thus far remained simple, and their fusion
with other data has been largely ad hoc. Early works have been
diverse and have included spatiotemporal analysis of tweets
to track the progress of a forest fire in France [14], as well
as the likelihood of inclusion of geographic information
(of flood/wildfire event) by a statistical analysis of tweets
among tweeters/retweeterst [15]. In [16], tweets were
used to track city activities by police departments, while
de Albuquerque et al. [17] exploited spatial correlations
between the categories of tweets and a flooding event in
Germany for tracking purposes.

C. Fusion of Two Heterogeneous Data Modalities

Twitter data were shown in [9] to have the potential of
helping manage disaster events by tasking targeted aerial and
satellite data collection for assessing infrastructure damage.
Specifically, hot spots were localized in a space–time coordi-
nate reference system for transportation issues by keying on
road/intersection word occurrences within a 1-km2 area and
in a certain interval of time.

In this paper, we couple the geotagged information provided
by tweets with satellite imagery data to perform a spatial
density estimation. Our proposed methodology departs from
existing work in the sense that our approach is centered around
optimizing a predefined criterion functional (to perform a
spatial density estimation–flood estimation/prediction) based
on one or more data sensor modalities with the remaining data
modalities used as constraints. Our goal is also to minimize
manual adjustments for tuning the relevance of one modality
over another, as is often practiced in ad hoc solutions to fusion.

D. Spatial Density Estimation and Optimal Transport

Spatial density estimation has been addressed largely along
two approaches: a deterministic track such as Inverse Distance
Weighting [18], and a statistical track such as Kriging and
Kernel methods [19]. Most if not all existing methods fall
short on accommodating noise due to the social media data,
the principal difficulty being the inconsistency of associated

geolocations inconsistent with the environmental surroundings.
Heuristic weightings and bandwidth selections have for the
most part been used.

In species distribution models, the spatial sampling bias
issue also arose [20], and a solution to debiasing the data
in sampling was proposed in [21], which primarily relied on
(unrealistic) estimates based on unbiased confidence intervals.

As further discussed in the sequel, we propose a principled
first attempt to accommodate a fusion of a heterogeneous set
of hybrid sensors, including social media with their notorious
noisy nature. We address the sampling bias of the geoloca-
tions of the labeled events from Twitter, and propose our
debiasing solution using optimal transport, a technique well
known in machine learning and data science for transfer
learning [22]. Intuitively, this in effect transports a probability
density function of a source domain to accommodate the
target domain. The local nonlinear mapping property of the
optimal transport is recognized for its effectively addressing
transfer learning [7], together with its natural interpretation of
distance of distributions in the so-called Wasserstein metric
space. We demonstrate its application as a novel debiasing
tool, and hence, mitigating the inherent limitation of social
media. We invoke prior knowledge (in our case, historically
recurrent flooded regions) to define a distribution in the target
domain, and use the transported geolocations of labels in the
maximum entropy model for near real time data fusion. The
merits of our method include a minimal number of hyperpa-
rameter adjustments for the noisy data, and a geometrically
interpretable relocation result.

III. PROBLEM STATEMENT AND FORMULATION

Our primary objective is to propose a principled opti-
mized framework to homogenize the heterogeneous large-scale
data and provide a quantitative strategy to estimate/predict
a scenario, which in this case, pertains to a flood over a
geographical region.

Our specific hazard extent estimation objective is to estimate
a flooded area as a field distribution using maximum entropy
as the guiding principle. The maximum entropy principle is
a well-known statistical model dating back to the 1950s [23].
The rationale of the maximum entropy is to seek the most
unassuming, and hence, maximally random model.

A. Overview of the Weather-Related Data: Boulder Colorado

The proposed method was tested on data related to the
2013 Boulder Colorado Flood. This event was declared
as a natural disaster starting in September 2013. From
September 9 to 15, some places in Boulder County saw up
to 17 in of rainfall, which was comparable to the annual
average of approximately 20 in. The flood caused at least eight
deaths, with several people missing or unaccounted for, and
the evacuation of over 180 000 people. Financially, the flood
was estimated to have caused two billion in damage.

Satellite imagery is one of the principal tools to gather
data about events of interest, including floods. Landsat 8
is an American satellite, operated by National Aeronautics
and Space Administration and the United States Geological



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I

SPECTRAL INFORMATION FOR THE OLI SENSOR†

Fig. 2. Flood data set. (Left) Panchromatic image of the city of Boulder, CO,
USA, taken on September 17, 2013 from Landsat 8 satellite image, overlaid
with geolocated tweets. (Right) UFE as our ground truth.

Survey. The satellite carries two sensors, an Operational Land
Imager (OLI) and a Thermal InfraRed Sensor. The OLI is
a multispectral sensor that collects images in nine shortwave
bands. Table I shows the spectral information for the OLI
sensor. Shortly after the flood, the Landsat 8 satellite passed
over Boulder Colorado capturing multispectral images of the
flood aftermath. There is also a photograph of this region prior
to the flood on August 25, 2013. The images from this satellite
are publicly available. Fig. 2 shows a panchromatic image of
the City of Boulder taken by Landsat on September 17, 2013.

Novel information streams, such as social media contributed
videos, photographs, and text as well as other open sources,
as noted earlier were also available as a means of improving
situational awareness during emergencies. As contributed data
with spatial and temporal information, they provide valuable
volunteered geographical information, harnessing the power of
“citizens as sensors” to provide a multitude of on-the-ground
data, often in real time [9], [24].

Throughout the flood event, social media data were
collected from Twitter. Often times, users use hashtags to
somewhat contextualize their messages. During the flood,
several hashtags emerged to indicate a connection to the
2013 Boulder Flood, such as “#LongmontFlood,” “#boulder-
flood,” and “#coflood.” In addition, depending on the users’
preferences, a small fraction (1% − 2%) of the tweets were
geotagged with the metadata of the latitude and longitude
of the phone at the time of posting. We can visualize the
distribution of people tweeting about the Boulder flood in a
region containing Boulder city and some of its surroundings
(see Fig. 2). Cervone et al. [9] further considered filtering the
tweets content to extract geolocation information, increasing

the percentage of geolocated tweets from 2% to 10%. In our
experiment, we only consider the original geolocated ones for
validation of our method.

Special flood hazard areas (SFHAs) are flood hazard areas
identified on Flood Insurance Rate Maps (FIRMs). SFHA
regions have a probability greater than 1% of being flooded
each year. These areas can be expected to flood at least once
every 100 years. SFHAs consist of several different types
of zones, some of them are: Zones A, AE, AH, and AO.
These different zones correspond to different methods of
calculation, or different expected types of flooding events.
For instance, Zone A regions are generally determined using
approximate methodologies, while Zone AE regions are deter-
mined with detailed methodologies. AH Zones correspond to
areas expected to undergo shallow pooling with depths less
than 3 ft, while AO Zones correspond to the regions expected
to undergo flood sheets on an incline with depths less than 3 ft.
The FIRMs for Boulder Colorado as defined prior to the flood
are also publicly available.

In the weeks and months following the flood, the city of
Boulder created a map of inundated areas to better understand
the flood as well as to potentially revise the SFHAs. With
the help of hand held GPS devices, workers geotagged high
water locations, and carefully produced an accurate account
of the inundated areas. With additional information from
community provided photograph evidence, the extent of the
flooding in some regions was also obtained. This information
was conglomerated to construct an urban flood extent (UFE)
map. The UFE was graciously provided to us by the city of
Boulder, to help us have a semblance of ground truth as a
reasonable approximation of the inundated areas.

Due to imperfection of the available data, we focus on using
the available data to prove our concept of fusion. We present
in Section III-B our proposed mathematical formulation of
the fusion problem, where tweets, Landsat 8 data, and SFHAs
(as historic priors) mentioned earlier are selected exclusively
for the evaluation and validation in our experiments.

In light of the significant incompatibility of these two
modalities, it is clear that centering our validation around them
meets our goal of addressing heterogeneous sensor information
fusion.

B. Formulation of the Fusion Framework

1) Setup: We consider a probability space (D,!,P(D)),
where D is our information fusion space, ! is the σ -algebra
on D and each s ∈ D is a variable which denotes an elemental
unit in D where all information can be treated as functions
f (s) associated with s. P(D) denotes the space of probability
measures over !. Particularly in spatial density estimation
problem, D is a measurable subset of R2. Our goal is to find
a distribution P ∈ P(D) as our density estimation optimizing
some information criterion and satisfying constraints given
by f (s).

Moreover, suppose we have K data modalities (from K
different sources) represented as maps { fi }i=1,...,K with their
own domains and ranges

fi : Di → Vi
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where the measurable Di may be different from D, and
Vi can be values taken in the field of real numbers R,
integers Z, complex values C, and so on. In our flood
estimation, the multiband satellite images yield different maps
fi ’s revealing the floods spectral information.

In particular, among all different fi ’s, a special map taking
categorical values is called labeling, that is,

fr : Dr → L

where Dr is the domain for the labeling fr , and L is a
categorical set of events. For simplicity, we restrict ourselves to
single event labeling, i.e., we consider fr = 1Dr , the indicator
function defined on Dr . In our flood example, all social
media data can yield labeling information. Regardless of
their heterogeneity, social media data may always be trans-
formed into appropriate labels (e.g., to express flood) after
certain data preprocessing steps, be it semantic analysis with
tweets, or image classification with flickr photographs, and so
on, leading to high-level semantic information in our fusion
framework. In principle, we can assume L labeling maps
among the K modalities, it is also necessary to fuse the L
labeling information from different sources.

Since different data modalities are associated with differ-
ent domains Di ’s, we first proceed to homogenize the data
into a common domain D for sensible and coherent fusion
(information space), namely,

φi : Di → D

where the measurable map φi could be nonlinear and φ−1
i is a

set-valued map (φi being many to one). This formalism allows
the alignment of different domains to a common domain for
fusion.

Remark 1: In our flood case study, the homogenization can
be naturally addressed for Landsat 8 data and geolocated
tweets. Since the multispectral remote sensing data are asso-
ciated with 30 × 30 m2 grid cells for most bands, one can
consider those cells as elements in D, and other heterogeneous
data such as geolocations of tweets can be associated with
those cells in a Voronoi diagram fashion, that is, φi as a
mapping from locations of the social media labeling to their
nearest centers of cells based on the satellite data resolution.
In general, finding φi is nontrivial and case dependent.

Next, a fusion operator H is in place for combining all fi ’s
through φi ’s to a common fusion space V; a trivial choice for V
could be

∏
i Vi , i.e., the product space of various data ranges.

Following such a homogenization procedure (illustrated in
Fig. 3), one would naturally expect a nice representation for
the entity of interest in the fusion space through the mapping

x(s) := H( f1(φ
−1
1 (s)), . . . , fK (φ−1

K (s))).

In our case study for the flood density estimation,
H( f1(φ

−1
1 (s)), . . . , fK (φ−1

K (s))) becomes a product of real-
valued and binary vectors, namely, x(s) ∈ RK−L ×{0, 1}L , for
any s ∈ D. The homogeneous map x : D → V is therefore our
desired representation for fusion. We denote the real-valued
components of x to be [F1, . . . , FK−L ].

Finally, we focus only on labeling on finite domains, so we
define the empirical distribution P̂ fr (Sr ) ∈ P(D) according

Fig. 3. With different data modalities, a data fusion scheme is to homogenize
the data into an information fusion space D, where all modalities are
represented in a unified way.

to a labeling fr as a discrete measure with support on
Sr = {s| fr (φ−1

r (s)) = 1} ⊂ D

P̂ fr (Sr ) := {µ|µ =
∑

si∈Sr

aiδsi , ai = |φ−1
r (si )|/|φ−1

r (Sr )|}

(1)

where δsi is the Dirac unit mass on si .
With the general formulation and its specialization to our

case study (fusion representation vector x) in hand, we proceed
with the task of estimating a distribution according to an
information criterion of choice.

2) Optimization Fusion Model: Suppose P is the underly-
ing density of the labeled event in D of interest. Using the most
unassuming probability model for P , the well-known maximal
entropy model [21] (also adopted as the model of choice in
this paper), implicitly defines it as the result of maximizing
the entropy −P ln (P), with constraints given as

|EP Fj − EP̂ fr
Fj | ≤ C j (2)

for j = 1, . . . , K − L. EP and EP̂ fr
in (2) denote the

expectation operator (of Fj ) under distribution P and P̂ fr ,
respectively. C j is a tolerance parameter, depending on the
confidence of the representative strength of Fj . Note that
the intuition behind the constraints is that the first statistical
moments of features under the prevailing empirical distribution
should be close to those under the true distribution; higher
moment constraints are also natural to consider, depending
on one’s desired degree of approximation of the distribution.
More generally, we may view the density estimation problem
as a fusion model optimizing some information criteria I (P)
with respect to P with the following constraints:

d
(
µP

Fj
, µ P̂

Fj

)
≤ C j (3)

where µP
Fj

and µ P̂
Fj

are the distributions of Fj under P and

P̂ fr , respectively, and d is a metric quantifying the distance
between the two distributions.

To proceed with the framework for our optimized fusion
model, and to account for potentially numerous social sensors
(e.g., in addition to Twitter, Flickr imagery) as well as bias
correction, we assume having L labelings f 1

r , . . . , f L
r out

of K modalities (L ≤ K ) with the associated empirical
distributions denoted by P̂1, . . . , P̂ L . Our proposed fusion
model is then formulated as a two-stage optimization to
first compute the best overall prior distribution1 P̃ , then

1 P̃ is the barycenter of P̂1, . . . , P̂ L as an optimizer of
∑L

i=1 αi d1( P̃, P̂ i ),

where αi ≥ 0 and
∑L

i=1 αi = 1.
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optimize some information criteria with respect to P̃ and the
unknown P .

Optimized fusion model
Step 1:

P̃ = argmin
P∈P(D)

L∑

i=1

αi d1(P, P̂i ) (4)

Step 2:

minimize
P

I (P, P̃)

subject to d2(µ
P
Fj

, µ P̃
Fj

) ≤ C j , j = 1, . . . , K − L (5)

In the above-mentioned formulation, d1 and d2 are metrics
for distributions (and not necessarily the same). I (P, P̃) is
the information criterion for P and P̃ . Note that our formu-
lation is principled and very flexible for extension. There are
relevant work (see [25]) considering the fusion problem as an
optimization for a barycenter of a collection of measures in a
space, say Wasserstein metric space. However, our framework
is more general and considers features associated with different
measures; hence, the fusion could be carried out in different
spaces of probability measures to incorporate multimodality
data.

Remark 2: When we consider d1 as the Wasserstein dis-
tance (we omit the definition here and refer our readers to [26]
for details) in step 1 of our fusion model, P̃ is then called
the Wasserstein barycenter. Moreover, even when L = 1,
the optimization (4) in step 1 of our optimized fusion model
can be used for bias correction for some empirical distributions
from a labeling map, using optimal transport. This is closely
related to our least effort principle, which we shall elaborate
in the following.

3) Optimal P̃ for Bias Correction: As noted earlier,
the labeling of social media can be very noisy and biasedly
sampled. More precisely, the empirical distribution P̂ fr gen-
erated from the labeling fr may not be able to represent
P , i.e., d(µP

Fj
, µ P̂

Fj
) > δ for some δ, contradicting the

constraints (3) when C j is sufficiently small. We refer to this
issue as a domain shift, which is due to many factors. For
example, in our flood case study, people could only tweet
at a distance from the true flooded location. It thus makes
sense to try to mitigate this inherent bias by applying a
transport of the labeling fr ’s domain Dr to D̃r , where D̃r
is the set of relocations which are more likely to be true
flooded locations. Finding such a transport is challenging due
to the non-Gaussian inherent noise in the social media data.
To overcome this difficulty, we propose another principle in
this paper: a least effort principle. The optimal transport in
domain adaptation [7] embodies this principle, and helps us
alleviate the shift issue between P̂ fr and the desired P .

More concretely, suppose Sprior(x) represents our prior
criteria on feature selections, the set of relocations/likely true
flooded locations D̃r = {s ∈ D : Sprior(x(s)) ∈ T } is
characterized by a property T as a desirable property which

Fig. 4. Illustration of the optimal transport in the [F1, F2] domain, leading
to a transport in D.

Sprior(x(s)) must satisfy. For example, in the flood case study,
we may consider Modified Normalized Difference Water Index
(MNDWI) as a prior of choice, and its value above some
threshold could be used as a criterion for selecting the most
likely flood location candidates.

Suppose we have an empirical distribution P̂(S) =∑
si∈S aiδsi with support on S ⊂ D, we would like to find

an optimal transport T ⋆ formulated as a minimizer of the
following cost function:

M(T ) =
∑

si∈S

ai m(si , T (si )) (6)

where m is the cost, say Euclidean distance to move s ∈ S to
T (s) ∈ D̃r .

Remark 3: The optimal transport T ⋆ assigns ai to the
closest neighbor of si in D̃r according to the cost m; hence,
it naturally results in P̃ = ∑

si∈S aiδT ⋆(si ) as a minimizer
of d1(P, P̂) over all distributions with support in D̃r , where
d1 is the Wasserstein distance. This bias correction is, hence,
a special case of step 1 in our fusion model, with L = 1.

C. Computationally Feasible Solution

In the above-mentioned scheme for bias correction, T is,
however, computationally expensive and sensitive to D̃r which
depends much on an expert-based parameter tuning.

In order to minimize the parameter tuning for “unbiased”
relocations, we instead propose to introduce a target distri-
bution µ P̂t

Sprior(x)
of Sprior(x) under P̂t ∈ P(D) as a proxy

for prior knowledge. To transport the original distribution
µ P̂s

Sprior(x)
of Sprior(x) according to an empirical distribution P̂s

to µ P̂t
Sprior(x)

, a computationally more advantageous method is
to consider the Kantorovitch relaxed formulation [26] in the
optimal transport. The idea is to find a probabilistic coupling
γ ⋆ ∈ ((µ P̂s

Sprior(x)
× µ P̂t

Sprior(x)
) of which the marginals are

µ P̂s
Sprior(x)

and µ P̂t
Sprior(x)

instead of the explicit transport T , and
γ ⋆ satisfies the following:

γ ⋆ = argmin
γ∈((µP̂s

Sprior(x)
×µ

P̂t
Sprior(x)

)

∫

D×D
m(si , s j )dγ (si , s j ). (7)

In general, we consider a transport in a sample space ).
Fig. 4 illustrates the scheme in a discrete setting: to achieve
an improved distribution on D and correct an intrinsic bias,
a transport of the black colored dots {ss

i }ns
i=1 to the white

colored ones {st
j }nt

j=1 is accomplished in ) ∋ ω(s) =
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[F1(s), F2(s)] (Fi ’s are functions defined on D), where black
dots are represented by {ωs

i }ns
i=1, while white ones by {ωt

j }nt
j=1.

Their corresponding distributions are µs = ∑
(1/ns)δωs

i
and

µt = ∑
(1/nt )δωt

i
in the domain ), and µs is transported

to µt by an optimal coupling γ ⋆. γ ⋆(ωs
i ,ω

t
j ) represents the

probability mass of ωs
i being transported to ωt

j : this yields a
new distribution µ̃ for the transported µs . When a squared
(l2) distance is considered for the cost function, the transport
map T can be deduced from γ ⋆, that is, a barycentric map-
ping T (ωs

i ) = ∑
j nsγ ⋆(i, j)ωt

j [7, eq.(15)], yielding a new
distribution µ̃ based on the transported black dots as red ones.
One can naturally derive the transport for black dots in D, that
is, T (ss

i ) = ∑
j nsγ ⋆(i, j)st

j , visualized as relocated red dots
in D.

Remark 4: In our flood estimation problem, as we further
discuss in Section IV, we derive a modified empirical distri-
bution P̃γ ⋆

based on the transport of source data (locations
of the original tweets) to the target data (locations of historic
flood) over D.

Upon lifting the intrinsic limitations of the collected data,
we proceed to formulate the following optimization problem
to effectively address our flood estimation case study, the com-
putational details are deferred to Section IV.

minimize
P

P ln (P)

subject to EP Fj − EP̃γ ⋆ Fj | ≤ C j . (8)

IV. ALGORITHMIC FUSION SOLUTION

We develop our algorithmic solution to the data-based
fusion problem using the formalism developed earlier.
We focus on solving the problem in (8). We use a two-
step procedure: mitigate for the bias by an optimal transport
followed by the solution for the maximum entropy model.
Note that our fusion model now applies to a finite domain
D = {s1, . . . , sn}, each si ∈ R2. The desired distribution
P ∈ P(D) and the empirical distribution P̂ ∈ P(D) are
written as

P =
∑

si∈D

aiδsi , P̂ =
∑

si∈D

âiδsi . (9)

Here, δsi is the Dirac function at location si , and ai ’s and
âi ’s are the coefficients in the probability simplex

!n =
{

a ∈ Rn |ai ≥ 0,
∑

i

ai = 1

}
. (10)

In our Boulder flood case study, we are to estimate the
flood density P over D. We first find P̃ based on P̂ in order
to remove the bias in P̂ , and derive it from geolocations of
tweets.

A. Correcting Distribution Shift: Label Relocation
and Optimal Transport

The labelings of flood with geolocations from social media
suffer from a myriad of noise sources. The constraints in the

maximum entropy model (step 2 in our fusion framework) are
therefore vulnerable to the labeling quality. To correct the shift
between the empirical and the true density distributions, and
to also induce robustness to sampling locational noise, we first
make locational corrections with some expert knowledge.

It has been empirically established that normalized differ-
ence indices are appropriate and useable spectral signatures.
Flood/wetness has been shown to be best estimated by the
so-called NDWI [27], with an improved modified alternative
MNDWI [28]. The calculation for the MNDWI during or after
the flood relies on two Landsat bands, the green band, and
the short wavelength infrared band. Another feature that is
insightful for flood detection is the Normalized Difference
Vegetation Index (refer to [29] and references therein). More
precisely, the difference of NDVI before and after the flood is
a meaningful signature for flood regions, and defines a feature
DIFF-NDVI := NDVIt2 −NDVIt1 , with the time stamp t2 > t1.
A simple way to solve (6) with m being the Euclidean distance
between s and T (s) is to find the nearest neighbor for s in the
candidate set satisfying thresholding values. More specifically,
we consider expert insight for flood features, namely,

Sprior(x) = (MNDWI, DIFF-NDVI) (11)

with a candidate set being

{s|MNDWI(s) > θ1} ∪ {s|DIFF-NDVI(s) < θ2}. (12)

This approach is, however, computationally heavy and tends to
make our estimation unstable. In later experiments, we use this
simple relocation scheme for comparison with other methods.

For proof of concept, in our case study, we consider only
two empirical distributions after the homogenization, namely,
one P̂s coming from the locations of tweets, the other P̂t
coming from historic flood regions

P̂s =
∑

si∈D

as
i δsi , P̂t =

∑

si∈D

at
i δsi . (13)

Now, we consider ) as the sample space for ω(s) =
[βs, Sprior(x)(s)] (β is a constant weighting coefficient), two
distributions of ω according to P̂s and P̂t in (13) are given
as

µ P̂s
ω =

ns∑

i=1

as
i δω(ss

i )
, µ P̂t

ω =
nt∑

i=1

at
i δω(st

i )

where ss
i ranges over all locations with as

i > 0; st
i ranges over

all locations with at
i > 0. The nonzero vector as belongs to

the probability simplex !ns , and at belongs to the probability
simplex !nt .

We consider the relaxed formulation of optimal transport by
computing the optimal coupling γ ⋆

γ ⋆ := arg min
γ∈B

< γ , M >F (14)

where B represents the set of associated discrete couplings
between µ P̂s

ω and µ P̂t
ω , that is,

B = {γ ∈ (R+)ns×nt |γ 1nt = as, γ T 1ns = at }
and M = (mi, j ) is the cost matrix where mi, j denotes the cost
of moving from ss

i to st
j in ).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

In our experiment, we consider the following square l2 cost
function in ) to take into consideration both the geotransport
cost and prior feature transport cost when the transport is
carried out in )

mi, j : = ∥MNDWI(si ) − MNDWI(s j )∥2
2

+ ∥DIFF-NDVI(si ) − DIFF-NDVI(s j )∥2
2

+ β2∥si − s j∥2
2. (15)

We tune the parameter β by observing the geotransport cost
in D.

The optimization in (14) is a linear programming over
polygonal coupling constraints. Note that other regularization
methods are also possible for a potentially more efficient
computation of the optimal coupling [7], [30].

One can interpret the optimal transport γ ⋆(i, j) as how
much probability mass of ss

i is transported to st
j in ). When

ps
i = (1/ns) and pt

j = (1/nt ) (uniform distributed over the
data points), the optimal relocation can be expressed as the
following barycentric mapping based on the optimal transport
γ ⋆(i, j) [7]

T (ω(ss
i )) =

∑

j

nsγ
⋆(i, j)ω(st

j ) (16)

leading to the transport in D

T (ss
i ) =

∑

j

nsγ
⋆(i, j)st

j . (17)

This naturally yields a modified empirical distribution P̃γ ⋆

on D

P̃γ ⋆ =
ns∑

i=1

1
ns

δT (ss
i )

. (18)

Theorem 1: The transport scheme in ) with the given cost
function for bias correction yielding P̃γ ⋆

is an approximation
to a special case of solving (4) in step 1 of our fusion
framework.

Proof: The optimal transport carried out in ) with a
squared l2 cost is an optimal relocation in ) which optimizes
< γ , M >F . The derived P̃γ ⋆

can be seen as an approxima-
tion to

P̃ = arg min
P

W (P, P̂t )

which is a special case of (4) with L = 1, d1(·) being the
Wasserstein distance W (·) for the cost function mi, j defined on
D. P̂t is as defined in (13) which is the empirical distribution
based on historic flood regions. Furthermore, the candidate
P is restricted to a range over a set of probability measures
with support on at most ns atoms, with an initial support
being the same as that of P̂s in (13). The solution can indeed
be treated as minimizing a local quadratic approximation to
the minimal Wasserstein distance < γ , M >F at {ss

i }ns
i=1,

following a Newton update projected onto D, according to
[31, eq. (8)]. !

B. Solving for the Maximum Entropy Model

An equivalent formulation of the maximum entropy model
can be shown to be equivalent to a maximum likelihood model
with a Gibbs distribution [32]. This formulation can be written
as

arg min
P,λi

P̂ ln

(
P̂
P

)
+

K∑

i=1

Ci |λi |

subject to psi = e
∑K

i=1 λi fi (si )/Z (19)

where Z is the normalization factor over all si ∈ D, and λi is
the feature mixture parameters.

This formulation aims to find the maximum likelihood
Gibbs distribution that minimizes the relative entropy of the
empirical distribution. From this formulation, it is evident
that the optimal solution takes the form of a normalized
function on D of an affine combination of features. There
are several available options to solve this constrained convex
problem. While there are several different methods, each with
advantages/drawbacks [33], we opt for simplicity, namely,
an iterative scaling algorithm [34] to solve the optimization.
Consider

arg max
x∈P

−x T log(x/x0)

subject to Ax = Ay

where x0 comes from a prior distribution P0 (uniform in our
case), and y comes from the empirical distribution P̂ . Using
its equivalent maximum likelihood formulation, we have

arg max
x,λ

−yT log(x)

subject to x = x0 eAλ
∥∥x0 ⊙ eAλ

∥∥
1

which can be condensed into

arg max
λ

log(x T
0 eAλ) − yT log(x0 ⊙ eAλ).

To proceed, we take a coordinate descent approach on λ by
maximizing the difference in change of the objective function.
If Q(λ) is the objective value, we then calculate

Q(λ + δ) − Q(λ)

= log(xT
0 eA(λ+δ)) − yT log(x0 eA(λ+δ))

− log(x T
0 eAλ) − yT log(x0 eAλ)

= −yT Aδ + log

[
x T

0 eA(λ+δ)

x T
0 eAλ

]

≤ −yT Aδ + log
[
(x0 ⊙ eAλ)T (1 + (eδ j−1)Ae j )

x T
0 eAλ

]
.

The last inequality results from Jenson’s inequality on ex

with x ∈ [0, 1]. The update step is obtained by differentiating

−yT Aδ + log
[
(x0 ⊙ eAλ)T (1 + (eδ j −1)Ae j )

x T
0 eAλ

]

with respect to δ and solving for the critical point. When work-
ing with the bounding box regularization, there are several
critical points. The critical point that maximizes the objective
value corresponds to the update step.
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Fig. 5. (Left) Using the linear and quadratic feature functions, with 200 data points sampled from the ground truth, we can recover the distribution using
the maximum entropy model.

C. Hyperparameter Tuning

In our hyperparameter tuning of our optimized fusion
model, we consider in the flood density estimation the
following:

1) optimal transport parameter β for the transport cost
function;

2) relaxation parameter α for the constraints in the maxi-
mum entropy model.

All of the tuning requires the labeling of some true flood
locations; hence, in our case study, UFE has been utilized for
the tuning. In practice, the tuning can also be approximated
using SFHAs for flood locations with high probability.

In principle, the feature selection is also important for
an optimized fusion model. For the feature selection part in
our case study, we have also considered the combination of
different sets of features, including multispectral data before
and after flood as well as the elevation information. Testing
different feature sets using some true flood labels as our
empirical flood distribution, we have decided to use all of
the features. The result is shown in Section V.

The fusion algorithm is finally summarized as a pseudocode
in Algorithm 1.

V. EXPERIMENTS AND DISCUSSION

In the following experiments, we first demonstrate a toy
example showing the intuitive idea of the algorithm perfor-
mance in a simple 1-D density estimation case. We subse-
quently demonstrate our algorithmic solution to a real-world
problem of flood density estimation by fusing heterogeneous
data including satellite multispectral data and tweets.

A. Toy Simulation Example

At first, suppose the ground truth distribution is a Gaussian
distribution N(0, 1) over R with mean 0 and standard devia-
tion σ = 1. Sampling 200 points from the distribution, we use
the functions from the feature vector x(s) = [ f1(s) = s,
f2(s) = s2] for additional constraints (which is equivalent
to the first and second moment constraints). The maximum
entropy model solution will naturally be the Gaussian distrib-
ution (see Fig. 5 for the simulation results).

Algorithm 1 Optimized Fusion Algorithm
Input: Finite domain D (information fusion space);

All data modality f̃i : Di → V, i = 1, . . . , K ;
Optimal transport cost M;
Relaxation tolerance α for the constraints

1: Preprocessing data f̃i for homogenized maps fi : D → Vi
2: for categorial maps fi representing labeling do
3: Compute P̂ fi

4: end for
5: L = #(empirical distributions based on labelings)
6: if L ≥ 2 then
7: Assign weights αi ∈ [0, 1] for P̂ fi ,

∑L
i=1 αi = 1

8: Compute P̃ as a minimizer of the sum of its Wasserstein
distance to P̂ fi

9: end if
10: for fi NOT a labeling do
11: Normalize fi
12: Compute the moments of fi under P̃
13: Pose constraint |EP fi − EP̃ fi | ≤ σ ( fi )/α
14: end for
15: Solve the Maximum Entropy density estimation model

with constraints (Eq. (8)).

When the true underlying distribution of the data is non-
Gaussian, say we have a bimodal distribution following the
mixture Gaussian, i.e., P = (1/3)N(0, 1) + (2/3)N(10, 1),
and we have 100 sample points coming from the distribution
P̂ = (1/3)N(1, 1) + (2/3)N(12, 1) (that is, the mean is a
bias and shifts to the right the true mean of each mode).
Moreover, suppose we have some prior distribution Pprior =
(1/3)N(0, 2) + (2/3)N(10, 2), which has the same mean in
each mode as the ground truth but a larger deviation; we have
200 sample points from Pprior.

To show the effectiveness of our algorithm, we consider a
set of feature functions more general than linear or quadratic
features, since they would not suffice if the desired distribution
is not Gaussian. Instead, in the simulation experiment, we ran-
domly generated a set of bimodal feature functions f (s) =
α exp(−(x − µ1)2/(2σ 2

1 )) + (1 − α) exp(−(x − µ2)2/(2σ 2
2 ))

a mixture of Gaussians (normalized, and reflecting the true
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Fig. 6. (Middle) We first transport data from the empirical distribution to those from the prior distribution. (Left) Then with randomly generated feature set,
we estimate the distribution (purple) and compare to the ground truth (yellow).

bimodal distribution on the line), with α, µ1, µ2, σ1, σ2 sam-
pled from uniform distributions of certain ranges. We select
the “good” feature set once the maximum entropy fusion
model yields an acceptable estimation given the data sampled
from ground truth.2 Using then the optimal transport with the
Euclidean distance as cost function between the data points,
we transport data from the empirical distribution to those from
the prior distribution. This is shown in Fig. 6. In comparison,
when one applies the Expectation–Maximization algorithm
to the Gaussian mixture model with sample data from the
empirical or the prior, the distances between the estimated
ones and the ground truth (in l2 measure) are 0.29 (empirical
data points) and 0.12 (prior data points), while the distance is
less than 0.12 using our algorithm (depending on the feature
set we use, and we got 0.09 in some running instances).

B. Experimental Setup

As mentioned in Section III-A, we consider the Landsat 8
satellite images of date August 25, 2013 prior to flood and
September 17, 2013 after the flood. We consider furthermore
the first seven bands as they are most relevant to floods and
are of the same resolution. The structured bands with the same
resolution makes the homogenization step trivial, leading to
a 14-D vector f(s) for the center location s ∈ D ∈ R2 of
30×30 m2 cells. We also consider the elevation environmental
feature elev(s) at each location s. We then normalize x(s) =
(f(s), elev(s)) in each dimension over all s ∈ D, where D
is the finite landscape set containing all the cell centers. For
social media data, we constrain ourselves to only geolocated
tweets, note that this is different from [9], in which tweets
were utilized mainly for the purpose of identifying hot spots.
Our primary goal in this fusion experiment is to illustrate the
gain of including tweets as labeling for flood extent estimation
over the whole landscape of interest. This, to a great extent,
demonstrates the potential for spatial extrapolation with great
flexibility when all the available data are accounted for in the
fusion, thanks to the homogenization process. The information

2This example is to illustrate how the selection of these feature functions
may similarly reflect the scenario in the flood estimation case study, where
different features are more or less correlated with flood density. Our choice
here is, however, by no means a criterion for feature selection, but is rather
an algorithmic methodology for developing the fusion model.

TABLE II

PARAMETER TUNING FOR THE CONSTRAINT TOLERANCE C = σ (S(x))/α

space derived from homogenization, together with efficient
computational procedures has led to a near real-time robust
natural hazard estimation with a potential for spatial extrapo-
lation with no manual adjustments (i.e., no man in the loop).
We also note that the two expert suggested features MNDWI
and DIFF-NDVI in the post flood were used together with
the optimal transport for bias correction in order to alleviate
locational bias of tweets.

C. Evaluation of the Results and Discussions

In order to evaluate our estimation, we utilize the following
assessment method. First, the receiver operator characteristic
(ROC) curve is used to evaluate our binary classification of
flood versus nonflood based on the density estimation. The
curve is created by varying threshold and recording the true
positive (TP) rate against the false positive rate. AUC denotes
the area under the ROC, with values in [0, 1]. The higher the
value, the better the performance is. The UFE (Fig. 2) is served
as our “ground truth.”

We first decide on the parameter C in (2), it is best to
look at the performance of the fusion model with noise-
free flood locations by treating UFE as true labeling directly
first. Suppose ci = σ ( fi )/α, where σ ( fi ) is the standard
deviation of the feature fi under empirical distribution P̂ ,
and α is the tuning parameter. Working with the features from
all 14 bands (seven bands information before the flood and
seven after), we have the results with different α values given
in Table II. The smaller the value for α, the more relaxed
are the constraints in (2); therefore, a less sparse solution
(more uniform) leads to less accurate estimation. Based on
the results, it is harder and harder to get an increase in
AUC; hence, we consider taking α = 200 for all remaining
experiments.

For achieving a reasonable feature selection S(x(s)), and
hence, avoiding additional confounding factors, we compare
the following cases with a varied set of combined features for
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Fig. 7. (a) ROC performance with different feature selections is displayed
when taking UFE as a prior/empirical distribution directly. This highlights
the importance of using both presatellite and postsatellite imageries for the
differential in the multiband information, together with elevation information
of the region prone to flooding. (b) Using all seven band information from
Landsat 8 before and after the flood, together with the elevation, the ROC
performance is shown as a result of a naive use of a social media—this falls
short on the potentially achievable performance [comparing to the red curve
in (a)]. A manual selection of geolocated tweets only marginally improves
the performance.

fusion: 1) the first seven bands from Landsat 8 both before and
after the floods; 2) selection 1) with an extra feature coming
from the landscape elevation elev(s); 3) only post flood bands
with elevation; and 4) elevation alone. The results vary in
performance, as can be seen in Fig. 7(a). This experiment
unveiled that using all the information available achieves the
best result. We therefore consider the fusion of all the pre/post
flood remote sensing and elevation information [case (2)] in
the remaining experiments.

There are several possible reasons why using ground truth
falls short on yielding a “perfect” result: 1) UFE concerns
only urban areas; it does not include all the flooded regions
within the landscape under our study. This introduces some
factors of inaccuracy in the evaluation of our estimation. The
proof of concept nonetheless validates the proposed framework
and 2) there is a limit in the representative features coming
from satellite spectral band information, partly due to tem-
poral mismatch of the remote sensing data. But given more
timely update of satellite imagery, we expect a richer set of
representative features, to yield a better timely update of the
flood estimation. We plan to further explore this as additional
data becomes available.

We next illustrate the behavior of the maximum entropy
model when used in conjunction with biased location tweets.
As noted earlier, the inherent noisy location of the labels

Fig. 8. Performance is enhanced by the relocation of the tweets via
optimal transport. It is shown to achieve much better performance than
relocation according to the thresholding of some expert spectrum features.
The classification result of relying thresholding on satellite image alone is
also shown as a single vertex point on the red curve; relying on history flood
alone is shown as a single vertex point on the yellow curve.

introduces biases as people would normally not tweet while
in the center of any flood location. The results are shown
in Fig. 7(b) for a comparative assessment with the ideal
performance using UFE for empirical distributions [red curve
in Fig. 7(a)]. Note that with even a manual selection of the
social media, the performance can be slightly improved over
using all geolocated tweets.

To improve the geolocation information from the social
media data, we make locational corrections with the use of
expert knowledge. The manual classification of the tweets
into two groups revealed that for up to 75% of observations,
the tweeter may have been indirectly affected by the flooding,
but are not necessarily at a flooded location. These social
media observations should not be applied to the cell containing
the observation, but should be attributed to nearby pixels that
are likely to be flooded. Even the observations indicating
flooding in the immediate vicinity may need a positional
correction, as “flooding” at those precise GPS coordinates
would require the observer standing in or above-mentioned
water.

Instead of manual selection of tweets based on the contents,
we apply the transport of the labels to the closest cells likely
to be flooded using prior information. For our choice of
prior, we use the MNDWI and DIFF-NDVI. The best result
was achieved using relocations where DIFF-NDVI is less
than −0.06. The transport is found using spatial indexing
R-tree for efficient computation. As a comparison, the perfor-
mance of directly thresholding DIFF-NDVI for flood region
detection is inferior as can be seen from Fig. 8.

We also tested the coupling method for the optimal trans-
port. We select β = 102 for the transport cost in (15).
It surpasses all other methods. While one can observe in Fig. 8
that the history flood region alone achieves high TP with low
negative, (meaning the history flood region is very close to
our ground true), we are able to generate a well-performed
actionable flood map with a probabilistic insight.

VI. CONCLUSION

We have addressed the largely open problem of fusing
heterogeneous multimodality data by providing a formalism
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for a principled and systematic formulation and a sound
solution. This principled fusion framework provides a capacity
of accounting for heterogeneous data-level input information
with a decision-level output information.

Data homogenization and transport of labeling data against
the domain drift problem have led to mitigate some inherent
limitations of the sensing modalities in a real-world application
such as the flood distribution estimation.

While the general applicability of this proposed frame-
work is clear, many research issues remain. For example,
a performance analysis along with performance bounds would
further enrich this paper. Other research avenues include the
development of the dynamics of the fusion problem, i.e., the
spatial–temporal model for the hazard estimation. Homoge-
nization would not only be required in space but also in time.
With potentially more remote sensing data collected in time,
it is possible to test our fusion model with other appropriate
constraints for higher accuracy in its estimation behavior over
time.

A careful and thorough evaluation of the optimal transport
behavior can be achieved by taking advantage of the locational
data from their environmental neighbors. Feature extraction
and generation also hold much promise; approaches such
as dictionary learning, for instance, can enrich the model’s
adaptivity to other applicable situations. It is also possible
to combine with the tools introduced in [9] for hot spots
detection to make our landscape selection adaptive to the
labeling process. The metrics adopted in our fusion model
are also considered a critical part in further developing our
model.
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