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A B S T R A C T

The Analog Ensemble is a statistical technique that generates probabilistic forecasts using a current determinis-
tic prediction, a set of historical predictions, and the associated observations. It generates ensemble forecasts by
first identifying the most similar past predictions to the current one, and then summarizing the corresponding
observations. This is a computationally efficient solution for ensemble modeling because it does not require
multiple numerical weather prediction simulations, but a single model realization.

Despite this intrinsic computational efficiency, the required computation can grow very large because
atmospheric models are routinely run with increasing resolutions. For example, the North American Mesoscale
forecast system contains over 262 792 grid points to generate a 12 km prediction. The North American
Mesoscale model generally uses a structured grid to represent the domain, despite the fact that certain physical
changes occur non-uniformly across space and time. For example, temperature changes tend to occur more
rapidly in mountains than plains.

An evolutionary algorithm is proposed to dynamically and automatically learn the optimal unstructured
grid pattern. This iterative evolutionary algorithm is guided by Darwinian evolutionary rule generation and in-
stantiation to identify grid vertices. Analog computations are performed only at vertices. Therefore, minimizing
the number of vertices and identifying their locations are paramount to optimizing the available computational
resources, minimizing queue time, and ultimately achieving better results. The optimal unstructured grid is
then reused to guide the predictions for a variety of applications like temperature and wind speed.

1. Introduction

Numerical Weather Prediction (NWP) has been a computationally
intensive problem. The main drivers for the increasing computational
requirement include the growing complexity in NWP and the increased
model resolution (both spatial and temporal). Models with higher
complexity integrate more Earth system components, for example, the
atmosphere and ocean waves, to generate more accurate predictions.
Another driver are the refining spatial and temporal resolutions. Lorenz
(1969) pointed out that, ‘the errors in estimating the current state of the
atmosphere are due mainly to omission rather than inaccuracy’. As a
result, models are run with finer regular grids. The Global Forecast Sys-
tem has the potential to be run on a 4 km grid (Charba and Samplatsky,
2011), and the operational NAM runs on a 12 km grid. However,

Abbreviations: AnEn, Analog Ensemble; DOUG, Dynamically Optimized Unstructured Grid; EA, Evolutionary Algorithm; FLT, Forecast Lead Time; GA,
Genetic Algorithm; NAM, North American Mesoscale Forecast System; NWP, Numerical Weather Prediction; OMEGA, Operational Multiscale Environment Model
with Grid Adaptivity; RMSE, Root Mean Square Error
∗ Correspondence to: The Pennsylvania State University, Department of Geography, 205 Walker Building, University Park, PA, 16802, United States of America.
E-mail address: weiming@psu.edu (W. Hu).
URL: http://geoinf.psu.edu/ (W. Hu).

regular grids only employ uniform discretization while atmospheric
phenomena tend to be localized in both time and space (Skamarock
and Klemp, 1993). When a finer regular grid is used to capture the
dynamics of a weather event, required computational resources soar.
Studies have been done to seek alternative grid types. For example,
nested structured grids have demonstrated strength in simulating flows
over aircraft and tracking shock waves (Bacon et al., 2000).

A third driver for increasing computation lies in the case of en-
semble modeling where the model output comes from an ensemble
of different realization of perturbed model initialization. The required
computation multiplies with the number of members in an ensemble.
Despite the cost, the ensemble output can be helpful in identifying
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the prediction uncertainty. Therefore this method has been gaining
momentum in the past several decades.

In this paper, a DOUG is proposed to address the computational
characteristic of NWP generations. The DOUG is a fully unstructured
2-dimensional grid driven by an Evolutionary Algorithm (EA). Together
with the AnEn method, DOUG is designed to reduce the number
of operations performed while maintaining, or even improving, the
prediction accuracy.

Section 1.1 introduces grid refinement and grid adaptation tech-
niques, and their applications in NWP. Section 1.2 reviews literature
and studies on the EA. Section 2 describes the research region and
data. Section 3 talks about the methodology. Section 4 shows the pre-
diction results of the DOUG. Section 5 compares results from different
simulation and discusses the pros and cons of the DOUG.

1.1. Grid adaptation and refinement

Although grid adaptation and refinement techniques have been
widely discussed and adopted in Computational Fluid Dynamics prob-
lems (Jablonowski, 2004), probably (Skamarock et al., 1989) were the
first to apply adaptive grid technology to atmospheric flow modeling
in meteorological science.

Most of the time, grid adaptation and refinement are related to
each other, thus appearing together (Dabberdt et al., 2004; Bacon
et al., 2000; Jablonowski, 2004). Generally, grid refinement can be
classified into two categories, the local refinement and the global
refinement. The local refinement technique is to add grid nodes into
original computational grids according to properly predefined criteria.
Grid nodes from other areas may be removed to compensate for the
nodes added. The total number of grid nodes might fluctuate within an
accepted range. Tomlin et al. (1997) developed an adaptive gridding
method for modeling chemical transport to study plume features, which
generates denser meshes when it is closer to the smoke plume. The
Adaptive Mesh Refinement, developed by Berger and Oliger (1984),
is a classic example of local refinement technique by adding points to
improve solution accuracy. Although local refinement might generate
‘suboptimal’ grid (Luchini et al., 2017) in terms of global accuracy,
it is able to capture the dynamics of the event of interest. Another
category is global refinement which redistributes a fixed number of
total grid points. Global refinement is different from local refinement
that the number of total grid points is strictly fixed and does not
change during the refinement. Another major different is the scope of
optimization. Global refinement tends to look at the overall domain
while evaluating a certain mesh solution while local refinement focuses
on a smaller partition and decides whether to add or remove grid
nodes from this specific partition. The status of the other partitions
can be agnostic for the current partition because local refinement is
designed for approximating detailed features. Global refinement, on the
other hand, is designed for problems with a computational limit and an
overall goal to improve the accuracy of representation.

There are several techniques for grid adaptation and refinement.
Nested grid involves sequentially putting finer grids into the compu-
tational grid where a higher spatial resolution is needed (Mass and
Kuo, 1998; Juang et al., 1997). Several limitations are present. First,
it requires a prior knowledge of the interest, for example, a rough
trajectory of cyclones in cases of hurricane tracking. Second, propa-
gating dispersive waves between discontinuously changing grids might
be problematic, and the accuracy and the reliability on a smoothly
varying grid are higher compared with those on an abruptly varying
grid (Gravel and Staniforth, 1992). The elastic grid solves the problem
of abruptly varying grids because grid vertices are gradually moved
to their vicinity based on a calculated weight. Grids only become
larger or smaller depending on the motion of vertices. However, this
technique still encounters the issue that a prior knowledge is needed.
An improved version of the elastic grid is the Continuous Dynamic
Grid Adaptation (Dietachmayer and Droegemeier, 1992; THOMPSON,

1984). It is able to automatically adapt the spatial distribution of grid
points to the target of interest. However, it might require extra CPU
time because of the continuously changing grid-transformation terms
in the governing equations. Additional computation to discover the
optimized grid is unavoidable. Therefore the trade-off point between
computation and accuracy is very important.

An unstructured grid has also been used in grid adaptation and
refinement. The first study of our knowledge to use unstructured grid
technique for atmospheric simulation is the Operational Multiscale En-
vironment Model with Grid Adaptivity (OMEGA) (Bacon et al., 2000).
It is designed for real-time hazard prediction and allows models to be
simulated on different scales without sudden changes in grid shapes by
incorporating triangular grids. Hanna and Yang (2001) have compared
the OMEGA with some other state-of-the-art models and found that
the OMEGA has similar accuracy with the models on a regular grid.
Another example of an unstructured grid is ‘Atlas’, a library devel-
oped and maintained by European Centre for Medium-Range Weather
Forecasts (Deconinck et al., 2017). ‘Atlas’ provides the flexibility of
coupling different Earth system components, such as the ocean and the
atmosphere, by using a hybrid meshed. It is specifically designed with
the goal exploiting the emerging hardware architectures and adopting
the many-core architecture.

In summary, although grid adaptation and refinement techniques
are not yet a standard solution in atmospheric studies, there has been
important research exploring applications and importance of these
techniques. However, questions on how hard it is to generate and
use an unstructured grid and how to generalize criteria for optimizing
unstructured grids still remain less discussed.

1.2. Evolutionary algorithm

EA uses a computational model that resembles the biological evo-
lutionary process (Fraser, 1962) in the design. EA has been widely
adopted in numerical and non-numerical optimization problems where
a relatively large amount of local optima exists.

EA has three major components (Spears et al., 1993): (1) Evolu-
tionary Programming; (2) Evolutionary Strategy; (3) GA. At a higher
level, three components are similar to each other. For the brevity of
this paper, attention is focused on GA.

GA generally consists of 3 steps, population initialization, selection,
and reproduction (Montero et al., 2005). Take the maximum-value
problem of a continuous univariate function 𝑦 = 𝑓 (𝑥) as an example.
First, a population of numbers, also referred to as chromosomes, is
generated either randomly or by prior knowledge. Second, an indicator
for each chromosome is calculated from a predefined fitness function.
The fitness function can be defined as the function 𝑓 itself so that a
number with higher fitness score will be considered as superior (Beasley
et al., 1993) and would have a higher probability to survive. This
process is termed ‘selection’ or ‘ranking’ (Beasley et al., 1993). Third,
parents are selected from the population to ‘mate’ with each other
to reproduce a new population of offspring. Reproduction is usually
composed of crossover and mutation operators. Crossover takes two
or more chromosomes as parents, and mixes the genes from each
of them, producing one or more new chromosomes. Mutation is de-
signed to simulate the concept of gene mutation in a DNA sequence.
It is applied to a single chromosome by alternating its one or more
genes with a predefined probability. They are different by features:
crossover generates different chromosomes to explore new potential
global optimums; mutation generates similar chromosomes to exploit
local optimization. After the selection and reproduction, the process
iterates with the updated population until convergence of the algorithm
where the population produces adequately similar fitness values.

GA is not guaranteed to find the global optimum solution to a
problem, but it is generally good at finding ‘acceptably good’ solutions
‘acceptably quickly’ (Beasley et al., 1993). Analytic techniques, such
as differential equations, are usually faster than a GA if they exist.
Therefore the main ground for GA is in difficult areas where such
analytical approaches do not exist.
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Fig. 1. A temperature map from NAM model forecast output for 3 AM on December
31, 2014, at 2 m above ground level. The black dashed rectangle shows the subset
region with 4 424 grid points used in this work.

2. Data

NAM (Unidata, 2003) is one of the main weather models run by the
National Centers for Environmental Prediction. It has four cycle runs
per day starting at 00, 06, 12, 18 UTC, and for each cycle, it provides
forecasts with a 3-hourly interval until 84 h into the future. It covers
the North American continent at various vertical levels. In this work,
the 12 km horizontal resolution is used. NAM forecasts from January
1, 2015 to March 5, 2016 were collected and then cleaned to remove
days with missing values with 400 days left.

NAM analysis (Environmental Modeling Center, 2015) is used as an
alternative ‘ground truth’. Ground based observations are available but
there are only 669 stations which does not meet the spatial resolution of
NAM. The analysis of NAM would be helpful in this case. The analysis
product assimilates more data than the original forecasts, for example
observations from aircrafts and satellites. The analysis can be viewed
as the theoretical ‘best’ that the model can perform. The analysis of the
12 km NAM have four cycles per day starting at 00, 06, 12, 18 UTC.
NAM analysis from January 1, 2015 to March 5, 2016 were collected.

Fig. 1 shows the temperature forecasts for 3 AM on December 31,
2014, at 2 m above ground level from NAM. There are in total 262
792 regular grid points in the model output. The forecast data exceed
30 GB in size. This amount of data will be too large for developing and
testing the work flow. Therefore, a subset region with 4 424 grid points
is created from the east coast of the continental U.S.

Fig. 2 shows the temperature variability of the full and the subset
regions for the test and training period. The dates are the 9th of each
month from January, 2015, to February, 2016, to show the seasonality
both in the full and the subset regions. Data on the 9th of each month
are the most complete, so the date is chosen.

Although the subset region only has roughly 2% of the grid points
in the full region, because a relatively complex topography, including
water bodies, coastal areas, and mountains, is preserved in the subset
region, the spatial variability of the subset region is comparable to the
full data set. Therefore, this can be a sufficient representative case to
develop and test the methodology.

The AnEn is a multi-variate method. However, it is found that
using more variables does not necessarily result to a better predic-
tion (Clemente-Harding et al., 2016). 6 variables are used in total
and they are presented in Table 1. Horizontal wind speed and wind
direction are not directly used in NAM, but computed using the u and
v components of wind provided by NAM model.

Fig. 2. A comparison between the temperature variability of the full and the subset
regions from the data collected from January 2015 to February 2016. The dates are
the 9th of each month.

Table 1
Weather variables used in the AnEn method.

Levels 10 m above ground 0 m above ground 100 000 Pa level

Variables

Temperature

Total cloud cover Vertical velocity (pressure)Relative humidity
Horizontal wind speed
Wind direction

Fig. 3. The AnEn schema for generating a four-member ensemble forecast.

3. Methodology

The DOUG adaptation process is driven by a modified GA. The total
number of grid points is fixed. Grid points will be automatically dis-
tributed to areas in need of more points. Then forecasts are generated
at the selected grid points using the AnEn.

3.1. Analog ensemble

The AnEn method generates ensemble forecasts using a set of his-
torical forecasts and the corresponding observations (Delle Monache
et al., 2013, 2011). The data-driven technique takes the advantage of
the massive amount of past available observations to avoid solving
convoluted differential equations. As shown in Fig. 3, there are four
steps to generate four-member AnEn forecasts.

1. Starts with a current multivariate prediction;
2. Searches through the historical multivariate predictions, and

computes the similarity between current and past predictions;
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3. Identifies predictions with the highest similarity;
4. Uses observations corresponding to the most similar historical

predictions to generate the ensemble forecasts;

The similarity is computed using the following metric
(Delle Monache et al., 2013):
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where 𝐹𝑡 is the current NWP deterministic forecast valid at the time
stamp 𝑡 and a specific location; 𝐴𝑡′ is the historical NWP deterministic
forecast from the search space at the same location and the FLT, but for
a different time 𝑡′; 𝑁𝑣 is the number of physical variables used in the
comparison period; 𝜔𝑖 is the weight for each physical variable; 𝜎𝑓𝑖 is the
standard deviation for the physical variable 𝑖 calculated from historical
forecasts for each FLT and location; 𝑡 is equal to half of the window size
of the FLTs to be compared; 𝐹𝑖,𝑡+𝑗 is the value of the current forecast
for the physical variable 𝑖 at the FLT 𝑡 + 𝑗; 𝐴𝑖,𝑡′+𝑗 is the value of the
historical forecast for the physical variable 𝑖 at the FLT 𝑡′ + 𝑗.

The method is able to generate ensemble forecasts from deter-
ministic model without multiple simulation runs, which drastically
reduces computation compared with the conventional ensemble mod-
els. Conventionally, multiple model simulations are carried out each
with a slightly perturbed parameter initialization (Gneiting and Raftery,
2005) to test out the uncertainty. The AnEn method is flexible and
scalable (Cervone et al., 2017) which takes advantage of a multi-
core and multi-node infrastructure. It achieves 95% parallelization on
a single node and has also been tested on the NCAR supercomputer
Yellowstone.

3.2. Grid adaptation with an evolutionary algorithm

The DOUG adaptation process is driven by a modified GA. It is
very important to properly design representation and reproduction. The
spatial representation and reproduction procedures in the modified GA
are introduced in the following sections.

3.2.1. Representation
The goal is to find the optimal unstructured grid given a fixed

number of vertices. Once locations of vertices are identified, the cor-
responding unstructured grid will be the Voronoi graph determined by
the vertices. Recall from Section 3.1 that predictions are generated only
on vertices, and therefore there will be a resolution difference between
the unstructured grid and the regular grid. To carry out grid-by-grid
comparison, predictions on an unstructured grid need to be interpolated
to the same extent and resolution of the regular grid. An unstructured
grid becomes optimal when the final prediction from the unstructured
grid has the lowest overall RMSE defined below.

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2, (2)

where 𝑁 is the total number of available grid points which ensures
RMSE to be a grid-by-grid comparison between predictions and analy-
sis; 𝑦𝑖 is the prediction for grid point 𝑖; 𝑦𝑖 is the analysis for grid point
𝑖.

The fitness function of the modified GA is defined as 𝑓 = −𝑅𝑀𝑆𝐸
so that solutions with higher fitness measure are better than the others.
The goal is to find an solution that maximizes the function 𝑓 .

There are currently two ways to encode spatial features as genes
and chromosomes. One is to use a raster-like representation (a 2-
dimensional array). However, this could potentially be time-consuming
(Li and Parrott, 2016). Another way is the vector representation which
is adopted in this work. Each gene is a pair of numeric numbers that
stands for the x–y coordinates. A chromosome is therefore a vector
of coordinates. For example, for a particular unstructured grid with 5

vertices 𝐺 = {𝑃𝑖}, 𝑖 ∈ {1, 2, 3, 4, 5} and coordinates 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖), the
corresponding chromosome is defined as 𝐶 = {𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥5, 𝑦5}.
Note that the unstructured grid is always defined by a set of vertices.
The optimal unstructured grid is found when the set of vertices are
optimal.

3.2.2. Reproduction
Reproduction can be divided into crossover and mutation. Crossover

is a genetic operator used to switch parts of the genetic informa-
tion from two chromosome. It is a way to stochastically generate
new chromosome from the existing population, and therefore con-
tribute to the capability of exploration. This operator is found to be
particularly helpful in combinational optimization problems, like the
Traveling Salesman Problem, and in problems with a binary represen-
tation. Crossover operators are found to be helpful in speeding up the
convergence of population and finding the best solution faster.

The mutation operator operates on one chromosome at a time.
Each chromosome has a probability to be selected. If a chromosome
is selected, a proportion of the genes, also referred to as pairs of
coordinates, will be mutated with small values generate from the
Gaussian distribution. The distribution mean is the mean of coordinates
from the chromosome. The distribution deviation is determined by
the range of coordinates and a dampening factor. As the iteration
number grows, the dampening factor will decrease, therefore leading
to a smaller distribution spread. The spatial points will be moved with
smaller distances as the algorithm goes on.

3.3. Work flow design

Fig. 4 represents the work flow with the AnEn and the modified GA.
A population of random sets of spatial points are first selected. Each
set can be viewed as a chromosome. Predictions are generated only on
spatial points. A bias correction of the AnEn is carried out to recon-
struct the spatial consistency (Sperati et al., 2017). The unstructured
grid is then interpolated to a regular grid for grid-by-grid comparison
with model analysis. Then tournament selection randomly picks two
solutions and selects the better one until enough solutions have been
selected. The selection process does not greedily select the absolute best
subset of the population, which is referred to as the greedy selection,
but makes sure that some of the weaker solutions can be selected to
retain the population variability. The reproduction process is carried
out as discussed in Section 3.2.2. This process will loop until the process
reaches the maximum number of iterations.

This proposed workflow will be compared with random evolution-
ary algorithms with and without elitism. The random algorithms are
simply lack of the tournament selection step which makes the evolution
direction unclear to the algorithms. A random algorithm with elitism
includes some level of evolutionary pressure but it is shown later in the
results that it takes much longer to get to the same performance of the
algorithm with tournament selection.

4. Results

The modified GA has been run for 500 iterations to identify the
location of spatial points to optimize the overall temperature prediction
for 6 AM on January 1st, 2016. The population size is set to 100 to
keep a relatively large sample of chromosomes. Each chromosome has
200 genes, or spatial points. As discussed in Section 3.2.2, crossover
probability is set to 0.7 and mutation probability is set to 0.5. During
mutation, half of the genes on the chromosome will be mutated. Elitism
strategy is used so that the top 5% solution will always survive after
each iteration.

In Fig. 5, (a) shows the best solution of the population after 500
iterations. Figure (b) shows the evolution of fitness measures for each
generation. Recall that fitness is defined as −𝑅𝑀𝑆𝐸. Therefore, a
higher fitness value indicates a lower RMSE. The fitness value can
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Fig. 4. The process for identifying the optimal subset of points to compute AnEn using a modified GA.

Fig. 5. (a) shows the best set of vertices from the population after 500 iterations. (b) shows the evolution of fitness measures for each generation.

never go across the 0 horizontal line because RMSE can never be
negative. The accuracy is greatly improved during the first 50 iterations
and then the it reaches a plateau until about 400 iterations. The fast
convergence before 400 iterations shows that the algorithm is able
to find a good enough solution for unstructured mesh construction
relatively fast. It is the result of both mutation and crossover operations.
After 400 iterations, the algorithm shows a slight increase in forecast
accuracy. But the algorithm is terminated at the 500th iteration in
terms of the time consumption constraint. There is a 10-minute run
time limit for the algorithm for finding the solution, and in this case,
it can be translated to about 500 iterations. Another consideration for
termination is that grid points from all solutions in the final population
tend to have similar spatial patterns (not shown in the paper) which can
be a sign of convergence.

Although the optimized unstructured grid is developed based on
temperature prediction accuracy, it can be reused for other weather
variables since weather events are inter-correlated. Fig. 6 shows com-
parisons between the forecasts on a regular grid and on the DOUG for
six variables. Different variables might have different dynamics. For
example, total cloud cover values are very different from temperature
values, and therefore the optimal unstructured grid for temperature
might not be optimal for the other variables. However, this limit can
be partially offset in certain cases when the unstructured grid is reused
for a period of time. Because these weather variables are related, one
fast changing variable will also cause the other variables to change.
More importantly, the benefit of reusing the grid lies in the amount of

computing power saved and the acceptable and sometimes improved
prediction accuracy.

5. Discussion

The DOUG is compared with randomly generated unstructured
grids. The first random method is termed the pure random adapta-
tion. During each generation, random points are mutated and random
solutions are kept to survive to the next iteration. Because random
operations do not use the fitness selection, the pure random adaptation
completely lacks a selection pressure to generate better solutions. The
second random method is called random adaptation with elitism. This
method is similar to the pure random adaptation except it uses elitism.
The top one solution from each generation is kept, and the rest of the
solutions are selected randomly. Elitism is the only source of selection
pressure. Both methods have the same setting as the modified GA.

Table 2 compares the fitness values from the three methods respec-
tively for the 500th generation. Fitness value is defined as −𝑅𝑀𝑆𝐸.
Therefore a higher fitness value indicates better overall accuracy. The
DOUG yields the highest fitness measure. The fitness mean and median
of the DOUG both beat the two random methods. This indicates that
after 500 iterations, the DOUG is better than the random grids. How-
ever, interestingly, the fitness range of the DOUG is the same with the
pure random method, and random method with elitism yields a much
smaller range. This is due to the random feature of these algorithms.
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Fig. 6. The regular grid and the DOUG forecast comparison for different weather variables. Each variables are shown in regular grid on the left and in the DOUG on the right.
The three variables on the first row are temperature, relative humidity at 2 m above ground, and wind speed at 10 m above ground; the three variables on the second row are
wind direction at 10 m above ground, cloud fraction, and vertical velocity.

Fig. 7. The RMSE comparison between the random methods and the modified GA. Distribution shows the range of the RMSE of the population of a specific generation.

Table 2
Comparison of fitness values of the 500th generation from the DOUG population, the
pure random population, and the random population with elitism.

Number of
vertices in
each solution

Fitness value

Highest Lowest Range Mean Median

Pure random 200 −0.899 −0.93 0.031 −0.912 −0.917
Random with elitism 200 −0.846 −0.847 0.001 −0.846 −0.846
DOUG 200 −0.75 −0.78 0.031 −0.758 −0.753

Crossover is not used for the random method, so the range depends on
mutation which can hardly be controlled.

Fig. 7 compares the RMSE for the 500 generations. The blue solid
line indicates the RMSE changes of the modified GA algorithm. The
distribution comes from the RMSEs of the population. As a comparison,
the red dotted line indicates the pure random grid adaptation. The
green dashed line indicates the random adaptation with elitism.

The random methods show the importance of selection pressure.
The performance of the pure random method serves as a benchmark.
With elitism, the algorithm performs better than the pure random
adaptation, but the decrease of RMSE is not as fast as the modified GA
algorithm. Additionally, the modified GA has the smallest distribution
shows that there is a higher confidence that the optimized solution
exists in the population.

Fig. 8(a) compares the RMSE from different methods for 2 months.
Because unstructured meshes have different resolution from the base-
line observational grid, the generated meshes are first interpolated and
resampled to the same extent and resolution of baseline observations
using inverse distance weighted interpolation. And then, RMSE is calcu-
lated based on a grid-to-grid comparison. The horizontal axis represents
the index for test days starting from January 1st, 2016, to March 5th,
2016. The random grid and the DOUG are both generated for the first
day on January 1st, 2016, and then reused for the rest of the test
days. Analogs are also computed for each grid point, and the overall
accuracy represents the theoretical best accuracy that the DOUG can
reach, because the DOUG consists of fewer grid points in the region so
that errors would potentially be introduced by interpolation.

For most of the days, the AnEn on a regular grid has the lowest
RMSE as expected. When fewer grids are used, the random unstructured
grid generates the worst result while the RMSE of the DOUG is very
close to NAM model forecasts and the AnEn on a regular grid. This
indicates the importance of the optimization of the unstructured grid
when the number of vertices is limited. The RMSE difference can be as
large as 2 degrees with and without optimization.

In Fig. 8(b) shows the error differences between each of the two
unstructured grids and the theoretical best. A horizontal reference line
is plotted at 𝑅𝑀𝑆𝐸 = 0. The green background indicates when the
accuracy of DOUG is closer to the theoretical ‘best’ than the random
grid. Note that on day 55, which is February 25, 2016, there are no
analysis data available. This can happen but is not common. Out of
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Fig. 8. (a) shows the RMSE for 2 months from different methods. ‘Random’ stands for reusing the pure random unstructured grid optimized for the first day; ‘GA’ stands for
reusing the DOUG optimized for the first day; ‘AnEn’ stands for computing analogs for every regular grid point; and ‘NAM’ stands for the model forecasts on a regular grid. (b)
shows the differences of RMSE over time for 2 months. A horizontal reference line is drawn and the green background indicates the error difference of the DOUG is closer to 0
than the that of the random grid.

400 days, there is only one day with missing data. All the other days
show a green background indicating that using the DOUG is always
better than the random grid. There are 2 test days, day 6 and 7, that
the RMSE difference of the DOUG is negative. This suggests that the
DOUG generates even better overall accuracy than the theoretical best
RMSE. This demonstrates the benefit of the spatial abstraction. By
optimizing the locations of spatial points, high error-prone areas can
be avoided and therefore areas with higher predictability will have
a larger probability to be selected. The benefit from avoiding high
error-prone areas surpasses the errors brought by interpolation.

Another aspect to notice is that, in figure (b), the blue line shows
an slightly upward trend after the 43rd test day while during the
first 42 days the errors are closely restrained to the referential level.
Reusing the unstructured grid optimized for the first day should cause
the prediction error to accumulate because the grid is fixed while
the weather dynamics is changing. There is a limit of how long a
DOUG can be reused. In this case, the reuse cycle is 43 days. This
limit can vary with a number of factors. First, predictands can affect
the limit. Temperature is a gradually changing variable, unlike some
other weather variables that can change very fast like total cloud cover
and precipitation. Second, topology can affect the limit. In this case,
the selected region is a rather complicated area with water, coasts,
and mountains, which can contribute to a highly variable weather
dynamics.

Fig. 9 shows the prediction errors from different methods. RMSEs
are computed for each FLT. The distribution comes from the 64 test
days from January 1st, 2016, to March 5th, 2016. Green box plots show
the RMSEs of the AnEn method on each of the regular grids; orange
box plots show the RMSEs of the original NAM model forecasts on a
regular grid; purple box plots show the RMSEs of the AnEn method
on the DOUG; and lastly red box plots show the RMSEs of the AnEn
method on a randomly generated grid. Forecast lead times 06 h, 12 h,
18 h, and 24 h UTC correspond to the local time in New York 02 h, 08 h,
14 h, and 20 h respectively. From forecast lead time 06 h to 18 h UTC,
RMSEs of all methods, except the random method, increase because of
the accumulation of model errors. However, at the third forecast lead
time 18 h UTC, the DOUG generates significantly better results than
the AnEn on a regular grid. This indicates that the DOUG can constrain
the growth of model errors and achieve a lower RMSE when forecasting
further into the future. At the fourth forecast lead time, RMSEs drops in
all cases except for the random method because NAM model generally
performs better during night time, and therefore there will not be a
clear benefit in using grid abstraction technique and the DOUG.

To evaluate the relation between the computational performance
and the prediction accuracy of both the random unstructured grid and

the DOUG, experiments have been carried out on a Dell desktop with 4
cores and 12 GB of memory. The processor model is Intel(R) Core(TM)
i7-3770 CPU @ 3.40 GHz. With hyper-threading enabled, in total 8
threads can be used in parallel.

Random grids and the DOUG have been developed with different
numbers of vertices ranging from 10 to 1010 with an interval of 50.
Similarly, the final prediction on a unstructured grid is interpolated
to a regular grid and compared with the analysis data to calculate
the grid-by-grid RMSE. The process is repeated 10 times for statis-
tical accuracy to account for stochastic effect. Fig. 10(a) shows the
distribution of RMSE. Given the same number of vertices, the DOUG
generates predictions with lower RMSE than the random grid. When the
number of vertices increases in both grids, their RMSE values tend to
converge and become closer to the theoretical best accuracy specified
by the reference line. The reference RMSE comes from the AnEn on
a regular grid. This is expected because when more vertices are used
in the region, the additional errors introduced by interpolation are
reduced. Ultimately, when the number of vertices reaches the number
of the regular grid, the random grid and the DOUG will become the
same as the regular grid because they are using every grid point
available. Another way to interpret Fig. 10(a) is to look at the box
plots horizontally. For example, to achieve an RMSE of roughly 0.8, the
random grid requires 360 vertices but the DOUG requires 160 vertices
saving the computation to generate forecasts on 200 vertices.

Fig. 10(b) shows the RMSE difference by subtracting that of the
DOUG from the random grid. This figure shows how much better the
accuracy can be when the number of vertices is fixed to a certain level.
When fewer spatial points are used, the benefit of using a DOUG is
not very clear. For example, when only 10 spatial points are used, no
matter how much the algorithm optimizes their locations, the overall
accuracy will not be very difference from locations that are randomly
selected. When more points are used, strategy becomes more and more
important. But at last, these two methods will resemble to each other
because ultimately both methods will at most use each of the regular
grid.

6. Conclusion

The research explored the ability of an unstructured grid to op-
timize computation while retaining or even improving the forecast
accuracy. An unstructured grid can optimize the computation because
it uses fewer grids to represent the region of interest and therefore
fewer computational resources are required to generate forecasts on an
unstructured grid than using a regular grid.
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Fig. 9. The comparison of prediction errors across different FLT from different methods.

Fig. 10. (a) compares the RMSE for pure random grids and the DOUG given a different number of vertices in the grid. Experiments are repeated for 10 times to get the distribution.
A horizontal reference line is shown with RMSE of the AnEn on a regular grid. (b) shows the RMSE difference between the DOUG and the random grid. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The proposed DOUG driven by a modified GA is found to beat
random adaptation. In certain cases, the overall accuracy is very close
to or even better than using a regular grid. This method can automati-
cally identify areas in need of more vertices and allocate computational
resources accordingly. When reusing the DOUG, errors are constrained
in an acceptable range for the first 40 days in the case of temperature
prediction. The limit of how long the optimal grid can be reused still
needs to be thoroughly studied.

The DOUG shows promising performance in short-term temperature
forecast carried out in this study. It provides an innovative solution to
numerical weather forecast with a computational limit by trading off
the overall accuracy and the computational performance. It is suggested
to investigate the re-usability limit of an optimized grid for different
weather variables and improve the performance of the GA in any future
work.

Software availability
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