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Abstract
In 1998, the National Research Council published People and Pixels: Linking Remote
Sensing and Social Science. The volume focused on emerging research linking changes
in human populations and land use/land cover to shed light on issues of sustainability,
human livelihoods, and conservation, and led to practical innovations in agricultural
planning, hazard impact analysis, and drought monitoring. Since then, new research
opportunities have emerged thanks to the growing variety of remotely sensed data
sources, an increasing array of georeferenced social science data, including data from
mobile devices, and access to powerful computation cyberinfrastructure. In this article,
we outline the key extensions of the People and Pixels foundation since 1998 and
highlight several breakthroughs in research on human–environment interactions. We
also identify pressing research problems—disaster, famine, drought, war, poverty,
climate change—and explore how interdisciplinary approaches integrating people and
pixels are being used to address them.

Keywords Remote sensing . Population data . Human dimensions of global change . Data
integration .Mobile device data

Introduction

The seeds of a data revolution in the study of interactions between human society
and the environment were sown in the 1960s and 1970s as Earth observation (EO)
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satellites orbiting the planet began to amass volumes of global data on land cover.
Researchers began to use these new data to answer new sets of research
questions about human-induced changes in the landscape, such as urbanization,
deforestation, and crop production. The data were also used to gain insight into
the environmental drivers of problems for human societies, such as drought,
famine, and disasters. In the early 1990s, as a research community began to
coalesce around human–environment interactions, a Human Dimensions of
Global Change (HDGC) Committee was established under the National Re-
search Council. At the same time NASA was working to expand the community
of Landsat users to demonstrate the utility of EO data. NASA sponsored a
workshop through the HDGC Committee to explore the current state of the
connection between remote sensing and the social sciences and illustrate appli-
cations for Landsat data to advance empirical and theoretical understanding in
social science domains. The primary legacy of that workshop was the publica-
tion of the classic volume, People and Pixels: Linking Remote Sensing and
Social Science (Liverman et al. 1998), which compiled, synthesized, and
reflected on the early stages of this data revolution.

Twenty years later, we are several steps into a second data revolution marked
by the wide availability of environmental and social data at finer spatial and
temporal resolutions, analysis-ready data products, and new analytical and
computational tools. Researchers from a wide range of disciplines are leverag-
ing these technical advances to pursue a new generation of research on coupled
human–environment interactions, linking people and pixels to address new
matters of global concern. In the early stages of People and Pixels’ second
generation, we see value in revisiting and updating the original hypotheses,
exploring continuing limitations, and considering the implications of such
progress for the future. The purpose of this article is to identify and document
advances in data, software, coding, and processing that continue to facilitate the
connection between people and pixels and to highlight empirical work at the
intersection of people and pixels that advances our understanding of human–
environment interactions. This article is primarily targeted to demographers,
sociologists, economists, and other social scientists who are interested in incor-
porating environmental data into their work to explore human–environment
interactions.

We organize this article into three main sections. In the first section, we
highlight changes in the data landscape from 1998 to the contemporary period.
We discuss advances in remote sensing, the emergence of large-scale in situ
data gathered by mobile devices, and the growing class of derived data prod-
ucts for a range of topics of interest to social scientists. In the second section,
we discuss tools and software that are making this profusion of data more
readily accessible and applicable. In the third section, we present examples and
case studies of social science research areas demonstrating applications of
remotely sensed data. Within these examples, we first explore how remotely
sensed data are used to measure the context of social phenomena, and then we
address how remotely sensed data are being used to measure social phenomena
and their effects.
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Changes in the data landscape

Advances in remote sensing

Over the course of the past 20 years, space-based remote sensing has evolved dramat-
ically, and innovation continues to proceed ever-more rapidly (Mathieu and Aubrecht
2018). Systematically collected, geographically comprehensive, and rigorously cali-
brated EO data serve as a crucial backbone for analytics of population–environment
interactions.

The Landsat imagery that prompted People and Pixels now represents the beginning
of a long-term archive of moderate resolution imagery. Landsat data now encompass
more than 40 years of relatively consistent data at 30 to 60 m resolution, enabling
investigations of change stretching over multiple decades. Examples of studies taking
advantage of this long-term data archive include annual tracking of forest cover
(Hansen et al. 2013) and urban development (Li et al. 2015; Sexton et al. 2013),
assessing land use impacts on water quality (Olmanson et al. 2008; Zheng et al. 2015),
tracking the types of land cover that are converted to agricultural use (Gibbs et al.
2010), and characterizing fire events and post-fire succession (Röder et al. 2008).
Landsat data are complemented by data from the Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)
programs, which also span multiple decades. While Landsat has revisit periods of 8 to
16 days, AVHRR and MODIS generate data with coarser spatial resolution (250 m to
1 km), but with revisit periods of a day or less. The higher frequency data more readily
capture rapidly changing phenomena such as wildfire, floods, and other hazards.

As satellite and sensor technology has advanced, much higher spatial resolution
imagery has become commonplace. Commercial satellites such as SPOT, QuickBird,
IKONOS, and the WorldView sensors have been capturing imagery with 3-m down to
30-cm resolution and 1- to 3-day revisit periods since the turn of the millennium. In the
public realm, the European Copernicus program’s Sentinel satellite constellation,
launched between 2014 and 2017, provides both radar and optical data at 10-m
resolution with approximately 5-day revisit periods. All Copernicus data are free and
open under the joint European Union/European Space Agency data policy. The
combination of high spatial resolution and frequent revisit times, as well as availability
of both passive and active sensor technology, enables monitoring of local- to global-
scale trends and dynamics in land cover, supporting the identification of anthropogenic
impact on the environment and contextual features that influence humans. For example,
such imagery is being used to examine changes in the landscape in conflict zones to
assess the direct and indirect consequences of civil wars (see “Measuring social
phenomena and their effects” section).

Since the mid-2010s, microsatellite constellations have gained considerable com-
mercial attention. By deploying swarms of small satellites on a regular basis, data
providers (e.g., Planet Labs) maintain networks of many dozens of high-resolution
(0.5–5 m) sensors that together can provide daily, global coverage. Because
microsatellites are less expensive to produce and launch than traditional satellites,
many new operators continue to come online, including some with hyperspectral
(e.g., Satellogic) and radar (e.g., Iceye) capabilities. The competition may serve to
reduce the cost barrier for research applications of imagery from these commercial
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sources. Belward and Skøien (2015) provide a comprehensive listing of civilian EO
satellite launches and operating systems, and Denis et al. (2017) describe new innova-
tions and disruptive technology in EO systems and associated markets.

Innovations on the horizon include space-based video and high-altitude pseudo
satellites (HAPS). Organizations such as Skybox Imaging, UrtheCast, and Earth-i have
begun providing full motion HD video from space (Earth-i provides 2-min color video
clips). HAPS are large drones able to stay in the stratosphere (~ 20 km altitude) over a
fixed point on Earth for several months, providing platforms for telecommunication,
navigation, and remote sensing. HAPS would therefore be able to provide very high-
frequency observations for an area of interest. While the concept of HAPS has been
around for decades, operational systems appear to have come within reach only
recently (d’Oliveira et al. 2016). Both space-based video and HAPS are generating
interest in commercial and operational domains, for applications such as real-time
traffic and pedestrian monitoring (Esch et al. 2017). The potential for these technolo-
gies to contribute to human–environment interactions research, however, remains
largely unexplored.

With these advances in remote sensing, the ultimate goal of a “digital Earth,”
real-time continuous monitoring at very high resolutions, seems almost within
reach, and may prove to be beneficial in a range of research domains involving
populations and their activities across various spatial and temporal scales
(Aubrecht et al. 2015). The very high spatial and temporal resolution of these
data, potentially combined with data from in situ sensor networks, may eventually
“even [allow] for the monitoring of living species” (Association of European
Space Research Establishments 2017, p. 9). Social scientists have not yet fully
incorporated very high-resolution data into their work, in part due to remaining
barriers in terms of commercial data costs, complex data processing, and
extracting information of use to social scientists from such data. However, the
increasing availability of free or low-cost high-resolution imagery, accessibility of
distributed and high-performance computing, new analysis toolkits, and derived
data products may well enable very high-resolution data to drive a second phase in
the people and pixels revolution.

Derived/modeled data products

Derived and modeled data products address the challenge of extracting information of
use to social scientists from raw EO data products. While remotely sensed data capture
physical properties of the Earth, they do not directly capture phenomenon of interest to
social scientists, such as land cover change, vegetation condition, or the distribution
and characteristics of human populations. Derived and modeled products use remotely
sensed data, typically in combination with other data sources such as agricultural or
population censuses, as inputs into a model, classification process, or other workflow.
The outputs are analysis-ready gridded representations of social or biophysical proper-
ties of interest. Below we describe key advances in the development of data products
notable for their potential to advance knowledge about human–environment interac-
tions. We also discuss the uncertainty inherent in modeled data, which researchers
using these data products must keep in mind when drawing conclusions.
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Modeled environmental products

Over the past 20 years, a variety of modeled environmental products have emerged.
These products use remotely sensed data as a model input, potentially integrated with
other data, to provide pixel-based measures of environmental features such as forest
cover, surface water, and air quality that are important links in the human–environment
interface. General land cover classification products such as Global Land Cover 2000
(Bartholome and Belward 2005) and GLOBCOVER (Arino et al. 2007) form the
foundation for much of this work, and these products continue to be refined and
produced at higher resolutions (Jun et al. 2014). A more recent generation of products
focuses on specific types of land cover or land use, such as forest cover (Hansen et al.
2013; Pengra et al. 2015), agricultural land use (Ramankutty et al. 2008), and urban
land use (Esch et al. 2014; Pesaresi et al. 2013). Another class of products draws on
additional human activity data to map human alterations or pressures on the landscape
(Ellis et al. 2013; Sanderson et al. 2002; Venter et al. 2016). Finally, several recent
products consider nonterrestrial conditions such as air quality (Geddes et al. 2017; van
Donkelaar et al. 2016, 2018) and surface water dynamics (Pekel et al. 2016).

While a comprehensive review of these data products is beyond the scope of this
paper, it is important to recognize that such products provide significant new data
streams for linking people and pixels and studies at the human–environment interface.
The fact that many of these products are GIS-ready also promotes their use by a wider
community of researchers, and represents an important development since the publi-
cation of People and Pixels, when remotely sensed data processing was the province of
a select group of experts. Modeling, however, brings risks that uncertainties in the data
may not be fully understood by those seeking “plug and play” data. It behooves users to
read dataset documentation fully to understand fitness for use.

Gridded population data

As noted in the original People and Pixels volume, one contribution of remote sensing
to social science is to extend the reach of social science data. Social science data based
on censuses and surveys are limited in their spatial and temporal resolution because the
spatial representation typically relies on administrative units and data are gathered only
periodically, such as the decadal time frame common for censuses. They may also
exclude hard to reach populations or locations near potential conflict zones where
safety of the enumerators might be at risk. Countries where population data are not
collected via censuses or registries, or where data are not made available, are especially
challenging to incorporate into quantitative social science research. The wall-to-wall
coverage, high spatial resolution, and relatively frequent observations of remotely
sensed data can be leveraged to fill some of these gaps.

Gridded population data are typically created by starting with national census data
linked to administrative boundaries, then distributing the population in each unit across
grid cells falling within the unit. Techniques used to spatially distribute the population
within administrative units span a spectrum from simple areal weighting methods to
more complex techniques that utilize ancillary data to allocate population in more
“realistic” patterns (Leyk et al. 2019). The areal weighting approach equally distributes
the total count tied to a census unit across all grid cells within the boundary of the unit
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(Doxsey-Whitfield et al. 2015). Slightly more sophisticated is a pycnophylatic ap-
proach—an approach which weights the redistribution of census population data to
avoid abrupt discontinuities at boundaries between census units (Tobler 1979).
Dasymetric mapping approaches rely on ancillary data, such as land cover, to disag-
gregate census counts (Balk et al. 2006; Eicher and Brewer 2001; Leyk et al. 2019).
Starting with data like satellite-derived urban/rural land cover distributions (Balk et al.
2006), many current techniques use a variety of ancillary data, mainly derived via
remote sensing (Sorichetta et al. 2015; Stevens et al. 2015).

Dasymetric mapping approaches can generally be categorized as binary, weighted or
modeled, and hybrid. Binary dasymetric techniques rely on ancillary data to divide
pixels into those that are populated and those that are not (Mennis and Hultgren 2006).
Typically, settlement data, derived from remotely sensed land cover and/or nighttime
lights data, are used to identify grid cells that are likely to be populated. The census-
based population counts are distributed evenly among those cells, with no population
allocated to cells that are unlikely to be populated. A variety of spatially detailed (10–
50-m resolution) settlement layers with global coverage are now available (Esch et al.
2013; Pesaresi et al. 2013). Weighted and modeled techniques define a range of
population density classes, often based on multiple sources of ancillary data (e.g.,
elevation, land cover, nighttime lights). Statistical models are used to assign weights to
each population density class, and the census-based population is distributed according
to these weights. Hybrid approaches may rely on a statistical weighting layer combined
with a binary constraint (Stevens et al. 2015). For example, an analyst could assign
population only to built areas and create a weighting layer based on a statistical model
to allocate population within those areas (Schroeder 2017).

Several recent developments have returned to binary dasymetric techniques, empha-
sizing improvements in the creation of settlement data, rather than complex statistical
approaches. Previously, imagery-based settlement data had limitations, especially in
sparsely settled areas in regions where buildings are made of the same materials as
surrounding landscapes and are therefore difficult to detect, or where nighttime lights
emissions are too sparse or of low intensity to detect. Increased image resolution
combined with machine learning techniques has addressed these limitations, enabling
creation of settlement data that identify individual buildings (Facebook Connectivity
Lab and Center for International Earth Science Information Network - CIESIN -
Columbia University 2016). Other approaches leverage both optical and radar-based
data to create more accurate settlement layers (see World Settlement Footprint (WSF)
for example).

Some gridded population products go beyond population at place of residence to
represent temporal dynamics of human mobility, including diurnal, weekly, and sea-
sonal population fluctuations due to commuting patterns and travel and tourism flows.
Daily movement patterns have been addressed in population models since about the
early 2000s (McPherson et al. 2004). The first large-scale country-wide model was
produced for the USA (LandScan USA), containing both a nighttime residential as well
as a baseline daytime population distribution incorporating movement of workers and
students (Bhaduri et al. 2007). Daytime–nighttime maps have proven to be particularly
important in disaster risk applications to address exposure dynamics and evacuation
needs for rapid-onset hazardous events such as earthquakes, tsunamis, and flash floods
(Aubrecht et al. 2014; Freire et al. 2013) or terrorist incidents (Ahola et al. 2007).
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Moving beyond case-study–specific application to a full conceptual modeling and
processing framework for spatiotemporal population mapping, Martin et al. (2015)
developed SurfaceBuilder247, which incorporates both daily and seasonal movements.
Most recently, daytime/nighttime grids have been developed under the European
Commission’s ENACT project for all 28 countries of the European Union, considering
the presence of residents, workers by sector, students, and tourists, along with the
locations of residence and activity (Batista e Silva et al. 2018).

Given the variety of gridded population products available, it is becoming increas-
ingly important for users to carefully consider which product is best suited for their
requirements, necessitating extensive source and metadata information.1 Metadata
should help researchers assess the quality (e.g., recency and granularity) of the census
data and attribute accuracy of other ancillary data. The metadata should also provide
transparent information on the locational accuracy of ancillary data sources to help
researchers determine if data products are commensurate with their scale of interest.
Another significant challenge for producers of gridded population data is establishing
an appropriate means of validating final model outputs. The nature of attempting to fill
a gap between census and remotely sensed data means that reliable, accurate data are
seldom available against which to assess accuracy and model fit.

Poverty mapping

Gridded population data provide spatial distributions of the human population as a
whole, but generally do not provide information on population characteristics beyond
age and sex distributions (e.g., Center for International Earth Science Information
Network 2017). Recent efforts have begun exploring the use of remotely sensed data
to map population characteristics or particular segments of the population (Bosco et al.
2017; Doxsey-Whitfield et al. 2015). Poverty mapping, in particular, is of interest
because poverty data from national censuses and household surveys are often of poor
quality, lack spatial detail, or are altogether absent. Between 2002 and 2011, as many as
57 developing countries failed to conduct more than a single survey capable of
producing poverty statistics, and data are the most scarce in the poorest countries
(Serajuddin et al. 2015).

The global coverage and high temporal frequency available from remotely sensed
data makes them attractive as a potential supplement to fill the gaps in spatial poverty
data. While remotely sensed data cannot measure poverty directly, they can provide
indicators of variations in the level of development over space. Nighttime lights (NTL)
imagery has been used to describe variations in poverty at national and continental
scales (Ghosh et al. 2013; Henderson et al. 2012; Pinkovskiy and Sala-i-Martin 2016).
However, the coarse spatial resolution of NTL data (750 m for VIIRS DNB; 1 km for
DMSP-OLS data) limits their ability to assess variability at local spatial scales.

Researchers are now exploring the use of high-resolution imagery (spatial resolution
less than 5 m) to map poverty both within urban areas by identifying slum versus

1 The POPGRID Data Collaborative, a consortium of the major gridded population and settlement data
producers, was established to aid users in making these assessments. The POPGRID website (www.
popgrid.org) includes data documentation, tables comparing data products, and a web map service that
facilitates visualization and comparison across data products.
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nonslum areas and for entire countries. This research is based on the assumption that
spatial patterns of buildings and roads discernable from satellite imagery can charac-
terize slums and poverty levels. A number of approaches to mapping slums have been
tested, including simple visual interpretation; object-oriented approaches; machine
learning based on spectral and spatial features; and others (Engstrom et al. 2015; Kohli
et al. 2016; Kuffer et al. 2016; Taubenböck and Kraff 2014). Jean et al. (2016) used high
spatial resolution data to map poverty across multiple sub-Saharan African countries at
the village level using a convolutional neural network approach. Methods currently
under development incorporate spatial and spectral features from the field of computer
vision to detect areas with potential indicators of poverty (Engstrom et al. 2016;
Graesser et al. 2012; Sandborn and Engstrom 2016). Rather than mapping objects
(e.g., buildings, roads, cars), the spatial features approach characterizes variability in
the image related to spatial pattern, structure, orientation, texture, and irregularity
(Herold et al. 2003) that can be related to poverty (Engstrom et al. 2017a, 2017b).

Caveats for modeled data

Modeled and derived data products are attractive because they provide ready access to
variables of interest, such as land cover, precipitation, and human population distribu-
tion, with complete spatial coverage. However, because these data products are not
based on direct measurements of these variables at every point in space, they are
inherently uncertain. Uncertainties are introduced when combining multiple sources of
data, interpolating between locations or times, modeling relationships, applying ma-
chine learning, and any other approaches that essentially make educated guesses about
variables of interest based on observable variables.

Uncertainty is present in all types of modeled data products, and different products
that nominally describe the same variables inevitably differ from each other. For
example, in classified land cover maps, the classification of a pixel at a given location
may not be consistent from one product to another, particularly in transitional zones or
for mixed-type classes (Congalton et al. 2014). Among the many gridded population
products, the population density estimated for a given location may vary as a result of
the particular input data, ancillary variables considered, and the estimation methods
applied (Leyk et al. 2019).

Due to these uncertainties, users of modeled data products are well-advised to treat
them with an appropriate degree of caution. Users should be sure to review documen-
tation and published discussion of uncertainty for any modeled data products and
consider the implications of such uncertainty for their analysis. When multiple products
representing the same variable are available, users should carefully consider which
product is best fit for their use case (Leyk et al. 2019). Ideally, research incorporating
modeled data products should include some form of uncertainty or sensitivity analysis
to evaluate the validity of conclusions in light of data uncertainties. At a minimum,
researchers should be careful not to consider modeled data products as absolute truths.

In situ data from mobile devices

While advances in satellite and airborne sensors are increasing the spatial and temporal
resolution of remotely sensed data, another data revolution is underway on the ground.
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The introduction and rise to near-ubiquity of mobile devices over the past 20 years has
generated entirely new streams of in situ data. In 2000, there were fewer than 700
million mobile phone subscriptions, and now there are more cell phones in the world
than people. The World Bank (2016) has estimated that by 2020 there will be over 50
billion Internet-connected devices with the most significant growth and impact in the
developing world. According to a survey by the Pew Research Center in the USA,
while 65% of respondents had cell phones in 2004, this figure increased to 92% by
2015 (Anderson 2015). While mobile devices are most prevalent in the developed
world, the developing world is rapidly adopting mobile technologies, and there is
global recognition of the opportunity afforded by data produced by these devices.

Mobile devices are able to record the time and their location via GPS sensors or
triangulated from the cellular towers or Wi-Fi networks with which they communicate.
Therefore, observations based on mobile device activity are easily tagged with
timestamps and spatial coordinates. Data may be gathered from mobile devices either
intentionally by their users, for example through organized citizen science projects, or
incidental to other mobile device usage, such as social media posts and cell phone calls.
Such data have proven useful for assessing post-disaster situations (Cervone et al.
2016; Horanont et al. 2013; Lu et al. 2016a) and are increasingly being used to
understand population flows such as daily commuting, travel, and mobility patterns
(Mocanu et al. 2013; Wood et al. 2011).

Citizen science projects for environmental monitoring make use of “citizens as
sensors” to intentionally collect data through crowdsourced observations (Hultquist
and Cervone 2018). The data are stored and quickly disseminated using social networks
or dedicated services and made available to study specific phenomena. Such data can
be particularly valuable during and after natural disasters, when official sensors are not
available or are unable to provide detail commensurate with rapid changes over time
and space (Tidball and Krasny 2012). Ongoing work is developing techniques to
incorporate these data into spatial analysis frameworks and integrate them with other
types of spatial data (de Albuquerque et al. 2015; Schade et al. 2013). For example,
images of flooded areas collected by citizens can be combined with remotely sensed
data to determine accurate and detailed inundation boundaries (Panteras and Cervone
2018; Sava et al. 2017).

Data derived from mobile device usage also have the potential to increase the
spatial and temporal resolution of data on human activities. Established sources of
population data such as censuses and surveys have limited spatial and temporal
resolution, typically describing resident populations in terms of administrative units
and, at best, annual time steps. In contrast, data gleaned from traces of mobile
device activity, such as locations of cell phone calls, text messages, or social media
posts, can record specific movements and engagements with precise geographic
coordinates and timestamps. These data therefore have the potential to extend popula-
tion dynamics mapping toward near real-time representation of human mobility
(Aubrecht et al. 2018; Deville et al. 2014). Unlike citizen science observations and
other explicitly volunteered geographic information, mobile device users have not
intentionally created these data points for the primary purpose of generating observa-
tions on users’ location through time. Such data are nonetheless captured by service
providers and can be made available to researchers (Lu et al. 2016a). Some social media
data sources, such as Twitter and Foursquare, include publicly available text or image
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content, which are also tagged with time and location (Patel et al. 2017; van Zanten et al.
2016).

However, using these incidental data for research carries challenges. While very
widespread, access to and use of mobile devices are not universal. Connectivity can be
limited by environmental and situational conditions (Lu et al. 2016b), and social media
usage may be concentrated among particular population subgroups (Cesare et al. 2018).
In addition, because data derived from mobile devices are incidental to other activities
and not originally designed for research use, the data are unlikely to follow consistent
sampling patterns, which presents challenges for removing noise and appropriately
analyzing the data (Aubrecht et al. 2017). Another challenge for researchers with
limited budgets is that access to mobile device data often requires proprietary data
licensing agreements. Finally, ethical and legal standards on the use of data from
mobile devices are still evolving. Even if the data are collected with users’ explicit
consent, researchers should evaluate ethical implications and ensure that individuals are
not identified (Mikal et al. 2016).

New tools to facilitate data integration

Another important evolution in the data landscape has been the development of tools to
facilitate the integration of data across people and pixels. These new tools include both
custom-built platforms designed specifically for integrating these types of data and
general purpose analytical software and programming languages that are becoming
both more powerful and easier to use. These tools reduce the effort required to assemble
and process large swaths of remotely sensed data, and facilitate derivation of informa-
tion from remotely sensed data in formats and data structures more familiar to social
scientists. In this section, we briefly describe three data integration platforms that
provide data and functionality that are particularly useful for cross-disciplinary work
combining people and pixels: IPUMS Terra, which was developed out of the social
science community to facilitate the integration of physical variables derived from
remotely sensed data with census-based population data; Giovanni and AppEEARS,
both of which were developed primarily for the Earth science research communities but
which offer advantages for social scientists; and Google Earth Engine, which provides
a range of datasets and a powerful processing platform.

The Appendix provides more details about each of these platforms (sections
“IPUMS Terra,” “Giovanni and AppEEARS,” and “Google Earth Engine”), as well
as related information that is otherwise beyond the scope of this paper. The “Software
for handling spatial data” section of the Appendix briefly surveys the state of spatial
analysis software and developments in support for spatial data in more general-purpose
data analysis tools. The “Spatial analysis methods” section in the Appendix provides
key references addressing statistical and mathematical spatial analysis methods.

IPUMS Terra is a product of the IPUMS Data Center, which focuses primarily on
population data from censuses and surveys. Building on IPUMS’ large body of
population data, IPUMS Terra is designed to integrate population and environmental
data. IPUMS Terra utilizes location-based integration to transform among three data
structures: individual-level population microdata, area-level data describing places
defined by geographic boundaries, and pixel-based raster data (Kugler et al. 2015;
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Ruggles et al. 2015). IPUMS Terra currently includes population microdata and
associated area-level data from IPUMS International (Minnesota Population Center
2018); basic area-level population data from countries not participating in IPUMS
International; and environmental data on climate (Harris et al. 2014; Hijmans et al.
2005), land cover (European Commission, Joint Research Centre 2003; Friedl et al.
2010), and agricultural land use (Monfreda et al. 2008; Ramankutty et al. 2008).

Giovanni and AppEEARS are tools developed by NASA to facilitate remote
sensing data discovery, extraction, processing, and visualization (Adamo and de
Sherbinin 2018). Giovanni’s focus is largely on remotely sensed atmospheric
data of relatively low spatial resolution and very high temporal resolution
(including hourly datasets), concentrated primarily in the areas of atmospheric
composition, atmospheric dynamics, global precipitation, hydrology, and solar
irradiance. Giovanni enables online mapping and visualization, as well as data
downloads. AppEEARS’ focus is largely on remotely sensed terrestrial data of
moderate spatial and temporal resolution (30 m to 1 km; daily time steps or
monthly composites). Datasets available in AppEEARS include Terra & Aqua
MODIS, the Shuttle Radar Topography Mission (SRTM v3), Web Enabled
Landsat Data (WELD), Gridded population of the World (GPW), and NASA
data products derived from the Visible Infrared Imaging Radiometer Suite
(VIIRS) instrument. AppEEARS allows users to subset large geospatial datasets
based on user-defined polygons or points.

In addition to tools developed by the research community, Google is leverag-
ing their extensive hardware platform and computing resources to manage and
process increasingly large volumes of remotely sensed data. Google Earth Engine
(GEE) serves as a free platform (free for noncommercial use) where users can
easily visualize and download a relatively wide range of spatial data (Gorelick
et al. 2017). GEE hosts satellite and other geospatial data gathered from a range
of sources including Landsat, Sentinel, some MODIS data, Climate Hazards
Infrared Precipitation with Stations (CHIRPS), and many other datasets. GEE
also supports simple geospatial analysis through its own Explorer product and
more complex analyses through an application programming interface (API).

People and pixels in practice

People and Pixels outlined several ways in which remote sensing had the potential to
support social science research (Rindfuss and Stern 1998). Among the modes they
discussed, we have described advances in how remotely sensed data are being used to
provide additional measures for social science by extending the spatial and temporal
detail of population data and measuring features and phenomena such as poverty, forest
cover change, and climate variables. We now describe examples of social science
research that leverage remote sensing’s capabilities to measure social phenomena, their
contexts, and their effects, particularly incorporating time-series data. These examples
demonstrate how researchers use remotely sensed data to refine understanding of how
people interact with the environment and to broaden perspectives from individual
locations and events to broader scale patterns.
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Measuring the environmental context of social phenomena

Many social science disciplines have foundational theories that consider how individ-
uals or groups respond to changes in context over space and time. The increasing
availability and accessibility of remotely sensed data has enabled researchers to more
readily incorporate measures of agricultural production, surface water conditions,
urbanization, rates of deforestation, and other factors to test these theories. Remotely
sensed data have proven particularly valuable in the poorest countries, where land use
and agricultural censuses and climate monitoring systems are otherwise lacking. The
ability to measure changes in context over time with remotely sensed data allows
researchers to isolate and investigate the actual social phenomena of interest.

Researchers have taken advantage of detailed contextual data from remote sensing in
combination with individual-level health data to investigate interactions between food
security, climate extremes, and health outcomes. In investigations related to food
security, remotely sensed vegetation metrics such as the normalized difference vegeta-
tion index (NDVI) or the water requirement satisfaction index (WRSI) can be used to
estimate cultivated area, vegetation, or drought at fine spatial and temporal scales. In
some settings (namely rainfed and subsistence farming communities), these indices
may be used to estimate agricultural production, livestock fodder, or food availability in
a given community (Bakhtsiyarava et al. 2018; Brown et al. 2014). As such, remotely
sensed data complement sources of health data on individuals, such as the Demograph-
ic and Health Surveys or the World Bank’s Living Standards Measurement Study, by
providing estimates for agricultural extent and growing season conditions in the area
surrounding the community where the individual lives (Johnson and Brown 2014;
Shively et al. 2015). Researchers can then examine how individual health outcomes
vary in relationship to variability in the growing season or agricultural production
across time and space. Similar approaches can be used to link climate extremes such as
heat waves and drought to human health outcomes (Davenport et al. 2017; Grace et al.
2012; Isen et al. 2017), or climatic conditions to vector-borne disease outbreaks
(Chretien et al. 2007). These approaches can be extended to examine multilevel
interactions, incorporating individual, community, and environmental characteristics.
Disciplines within public health, including epidemiology and environmental health
sciences, have also explored linkages between health and context using remotely
sensed data. Remotely sensed data have been used in investigations of infectious
disease outbreaks, cancer occurrence, and linkages between air pollution and health
(Buczak et al. 2012; Dey et al. 2012; Maxwell et al. 2010; Stefani et al. 2013).

Remotely sensed data have also been applied to better understand the environmental
contexts relevant to historical populations. For example, archeologists have used high-
resolution synthetic aperture radar (SAR) data to map ancient irrigation systems that
now lie underground (Wiig et al. 2018). Anthropologists have also employed viewshed
analysis utilizing a SAR-based digital elevation model to gain insight about settlement
and activity locations on San Clemente Island (Comer et al. 2013). These analyses
revealed settlements situated within view of both each other and expanses of ocean
frequented by marine mammals, facilitating hunting activities, and ritual sites within
view of sites on other islands, reinforcing cultural and social relationships among
islands. Remotely sensed data has also helped explain the paradox of Petra, a great
ancient city built by the Nabateans. For centuries prior to the construction of Petra, the
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Nabateans were nomadic, amassing great wealth by transporting precious goods
through the vast deserts of the Arabian Peninsula (Comer 2013). Overlaying Nabatean
temples and terraces on NDVI images derived from satellite data reveal that they
appeared only in areas where agriculture is possible, suggesting a lifestyle transition
from nomadic to agricultural, probably driven by Roman actions disrupting the
Nabateans’ control of trade in the region. By exploiting environmental information
gleaned from multispectral data, Sever explored the relationship between Mayan
settlements and wetlands (Sever and Irwin 2003) and argued convincingly for overex-
ploitation of the environment as the cause of the collapse of the Mayan civilization
(Sever 1998).

Measuring social phenomena and their effects

Amajor thrust of People and Pixels was understanding the human drivers of land cover
change, especially in rapidly changing regions like the Amazon. At the time, the
available spatial and temporal resolution of remotely sensed data enabled identification
of land cover classes and terrain features, and researchers used this information to link
changes in land cover to demographic changes. This kind of research still features
prominently (de Sherbinin 2016) including studies relating population change to land
cover change (Aide et al. 2013), biodiversity loss (Williams 2013), and fire activity
(Hantson et al. 2015). Yet, in recent years, the range of application areas has expanded.
With increased spatial and temporal resolution, researchers are moving beyond land
cover and beginning to infer land use and other human activities through changes
detectable in remotely sensed data. Researchers have used remotely sensed data to infer
agricultural management practices (Gómez Giménez et al. 2017; Jain et al. 2016) and
evaluate the effect of governance policies on forest protection (Blackman et al. 2017).

Researchers are also beginning to use remotely sensed data to investigate phenom-
ena, such as narcotics trafficking and population responses to civil war, that are difficult
to detect in traditional census and survey data. High-resolution, high-frequency remote-
ly sensed data enable social scientists to detect the landscape signature of these
activities, and thereby use human–environment interactions as a means of developing
and testing theories about clandestine and otherwise difficult to measure phenomena.
For example, over the past decade, social scientists working in Central American
contexts began to notice new patterns of large, rapid, forest clearing in remote regions,
including protected and indigenous areas (Grandia 2013; McSweeney et al. 2014,
2017). They hypothesized that these patterns may be linked to narcotics traffickers
acquiring land over which to move cocaine and for money laundering activities such as
cattle and oil palm production (McSweeney et al. 2017). This hypothesis was tested by
using the analysis-ready Hansen forest change data (Hansen et al. 2013) to develop
spatial and temporal pattern metrics for patches of forest loss and identifying statisti-
cally “unique” groups of deforestation (Sesnie et al. 2017). Anomalous deforestation in
several departments of Nicaragua, Honduras, and Guatemala was found to be signif-
icantly correlated to cocaine flow data available at the departmental level, accounting
for between 15 and 30% of total forest loss in the region between 2000 and 2014.

The time-series data available from repeat imaging by satellite also holds promise
for understanding otherwise difficult to detect consequences of civil wars. Groups such
as UNOSAT, Human Rights Watch, Amnesty International, and satellite data-savvy
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journalists have used sequences of very high-resolution imagery to measure urban and
infrastructural damage following armed conflict across a range of contexts and coun-
tries. While these satellite mapping efforts have been essential at raising awareness and
supporting humanitarian relief, their focus on acute damage is only one component of
the war economy taxonomy, which includes “combat,” “shadow,” and “coping” econ-
omies (Goodhand 2004). The combat economy directly supports military objectives,
including territorial capture and control over natural resource exploitation; the shadow
economy involves commodity smuggling and high-value resource extraction; and the
coping economy encompasses adaptations by the noncombatant population, such as
labor migration and changes in agricultural production (Auty 2001; Collier and
Hoeffler 2002; Fearon and Laitin 2003; Hegre 2004; Ross 2004). Of the three aspects,
the coping economy has been the least studied (Ballentine and Nitzschke 2005), yet is
well suited for investigation by remote sensing. Moderate-resolution imagery with
subweekly repeat coverage and high-resolution weekly imagery now being made
available through the Copernicus program support examination across seasons, years,
and war periods (Witmer 2015). Land cover changes including urban construction,
deterioration, and damage and fluctuations in agricultural production can therefore be
detected across broad spatial extents (Eklund et al. 2017; Klaasse et al. 2018). These
changes may, in turn, signal population relocation or changes in agricultural practices
that reflect the coping economy.

Conclusion

When People and Pixels was published 20 years ago, it showcased the work of a
relatively small group of social scientists beginning to use newly available remote
sensing data. These researchers glimpsed the possibilities that connecting people to
pixels offered for understanding patterns and processes of human–environment inter-
actions and invested significant effort in making connections across scientific domains
and data structures. Key institutions also recognized the possibilities and supported
these efforts with funding, including NASA’s Land Use Land Cover Change Program
and NIH/NIMH funding for social and population scientists to use GIS and remotely
sensed data in their work (Entwisle and Stern 2005).

Over the past two decades, technological and cultural transformations have contin-
ued. Remote sensing data continues to be collected at ever-finer spatial and temporal
resolutions. Processing methods to extract useful information from these high-volume
data continue to develop, and new software and tools make the data more accessible.
These technical advances drive, and are driven by, increasing spatial awareness
throughout the social sciences and allied fields. Economists, public health researchers,
anthropologists, demographers, and political scientists are all increasingly interested in
not just the locations and times of specific events but the spatiotemporal patterns and
processes that underlie series of related events and interactions.

The technical advances and the increased interest in spatial approaches throughout
the social sciences are undoubtedly improving the connection between people and
pixels. However, important challenges remain. First, we must not lose sight of ethical
issues surrounding the collection and use of spatial data in social science applications.
Interest in linking traditional social science data with remotely sensed data has driven
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increased demand for more precise spatial locations in census and survey data. How-
ever, such spatially explicit data raise concerns and introduce tensions surrounding
confidentiality, data preservation, and data sharing for reproducibility (VanWey et al.
2005). Current approaches, such as that employed by the Demographic Health Surveys,
address these concerns by introducing uncertainty in spatial locations, which then
necessitates accounting for the uncertainty in analyses.

Second, uncertainty deliberately introduced to protect confidentiality is by no means
the only source of uncertainty when making connections between people and pixels.
Modeled and derived data products, such as those discussed in the “Derived/modeled
data products” section, have been a boon to facilitating work across disciplinary
boundaries. However, because the final data products effectively mask the complexities
of the processes used to create them, users of such data may be tempted to treat them as
“truth.” Researchers must maintain awareness of the multifaceted uncertainties in any
data they use and their potential effect on analyses. Developing readily adopted means
of accounting for and communicating uncertainty, therefore, continues to be a fruitful
direction for research.

Finally, another major challenge lies in the balance of research effort between
technical and substantive approaches. While technological advances will undoubtedly
continue, the questions posed by social scientists will not be answered by higher
resolution data or more processing power alone. We must ensure that the social science
research efforts receive adequate attention and support and are not overwhelmed by the
lure of new technology for its own sake. The trend toward greater interdisciplinarity to
address issues and concerns that cut across social and environmental science is
beneficial in this regard. Such complex questions are of great concern to policy makers
and citizens, and addressing them requires both theoretical frameworks encompassing
social and environmental domains as well as data on both people and pixels to provide
the empirical underpinning. In addition to the social and environmental sciences, a key
aspect of people and pixels is that remote sensing sciences must be closely involved in
the conversation. Continued dialog will enable remote sensing scientists to understand
what advances would be most beneficial to better understand landscape variability
relevant to socio-environmental challenges and enable social and environmental scien-
tists to better understand the limitations and advantages of the array of remotely sensed
data products.
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Appendix

IPUMS Terra

IPUMS Terra aims to foster more widespread use of linked population and environ-
mental data by taking the heavy lifting of data integration and transformation off the
hands of individual researchers. IPUMS Terra utilizes location-based integration to
transform among three data structures: individual-level population microdata, area-
level data describing places defined by geographic boundaries, and pixel-based raster
data. The IPUMS Terra data access system provides a workflow through which users
first select the data structure in which they would like to receive their output data. They
then select data of interest from one or more of the source data structures and make
basic decisions about how transformations are conducted. The system processes the
requested data, handling any necessary transformations, and delivers a customized,
integrated dataset in the user’s chosen data structure.

The transformations performed by IPUMS Terra depend on the output data structure
and the types of input data selected (Kugler et al. 2015; Ruggles et al. 2015). Users may
choose to receive area-level output data (describing administrative units) and include
both census-based aggregate population data and raster data on land cover or climate as
inputs. IPUMS Terra then transforms the raster data by calculating summary measures
(e.g., % area of forest cover, mean annual precipitation) for the administrative units
described in the aggregate population data. Area-level population and environmental
data can also be attached as contextual variables to individual microdata records, based
on the administrative unit in which the person lives. Conversely, IPUMS Terra can
distribute values from area-level population data across the pixels located within each
administrative unit to produce raster output.

The data available through IPUMS Terra encompass a range of population and
environmental characteristics. IPUMS Terra’s population data are primarily drawn from
IPUMS International (Minnesota Population Center 2018), which provides over one
billion microdata records from 94 countries, with multiple census years available for
many countries. IPUMS Terra has also pre-tabulated a series of area-level variables
from the microdata. On the pixel side of the data collection, IPUMS Terra includes data
on land cover (European Commission, Joint Research Centre 2003; Friedl et al. 2010),
harvested area and yield of 175 individual crops (Monfreda et al. 2008; Ramankutty
et al. 2008), long-term climate baselines (Hijmans et al. 2005), and time-series climate
data (Harris et al. 2014). Transformations between population microdata, area-level
data, and raster data are supported by IPUMS Terra’s collection of geographic admin-
istrative unit boundary data. For most countries, IPUMS Terra provides first- and
second-level administrative unit boundaries.

Giovanni and AppEEARS

Giovanni and AppEEARS are tools developed by NASA to facilitate remote sensing
data discovery, extraction, processing, and visualization. Giovanni’s focus is largely on
remotely sensed atmospheric data of relatively low spatial resolution and very high
temporal resolution, including hourly datasets. The tool uses server-side processing to
process requests “on the fly,” and produces map and graph visualizations. AppEEARS’
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focus is largely on remotely sensed terrestrial data of moderate spatial and temporal
resolution (30 m to 1 km; daily time steps or monthly composites). AppEEARS
delivers results within minutes or hours (depending on the degree of processing) by
email notification. Both tools enable analysis of time trends—Giovanni for one pixel or
averaged over a larger area comprising many pixels, and AppEEARS for multiple
points or polygons. Additional tools and use cases of Giovanni and AppEEARS are
described in Adamo and de Sherbinin (2018).

Giovanni’s remotely sensed data assets are concentrated primarily in the areas of
atmospheric composition, atmospheric dynamics, global precipitation, hydrology, and
solar irradiance. More than 1,850 variables are available, searchable via a keyword and
faceted search. Example variables of potential interest to social and health scientists
include precipitation, flooding, air temperature, PM2.5 particulate pollution, and UV
exposure. Mapping options include time averaging, animation, precipitation accumu-
lation, time-averaged overlay of two datasets, and user-defined climatology. For time-
series plots, options include area averaged, differences, and seasonal data (e.g., July–
August for daily max temperatures over multiple years). Visualization features include
animation, interactive scatterplots, contouring, and scaling (linear or log).

AppEEARS provides access to more than 100 datasets from Terra & Aqua MODIS,
the Shuttle Radar Topography Mission (SRTM v3), Web Enabled Landsat Data
(WELD), Gridded population of the World (GPW), and NASA data products derived
from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Selected
variables of interest to social scientists include land surface temperature, land cover
type, population counts and densities, elevation, and vegetation indices. A key feature
of AppEEARS is the ability to subset large geospatial datasets and to extract data for
specific locations or regions around the world. Data can be extracted using an area
sample via vector polygons (bounding box, Shapefile, or GeoJSON) or a point sample
with geographic coordinates. In addition to data values, the user also receives quality
values. The results preview includes interactive visualizations, decoded quality infor-
mation, and summary statistics.

Google Earth Engine

In addition to tools developed by the research community, Google is leveraging their
extensive hardware platform and computing resources to manage and process increas-
ingly large volumes of remotely sensed data. Google Earth Engine (GEE) serves as a
free platform (free for noncommercial use) where users can easily visualize and
download a relatively wide range of spatial data (Gorelick et al. 2017). GEE hosts
satellite and other geospatial data gathered from a range of sources including Landsat,
Sentinel, some MODIS data, Climate Hazards Infrared Precipitation with Stations
(CHIRPS), and many other datasets. Satellite images are processed daily and GEE
provides data for some areas covering up to 40 years. Users can specify their locations
and temporal scale of interest and download data for analyses in other spatial or
statistical analyses packages.

Beyond hosting satellite and geospatial data, GEE also supports simple geospatial
analysis through its own Explorer product and more complex analyses through an
application programming interface (API). The API allows researchers and developers
to leverage both the GEE data collection and Google’s cloud-based computing
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resources. The combination of data and processing power makes the development of
modeled environmental products at high resolution and global extent feasible (Hansen
et al. 2013; Pekel et al. 2016). For example, the Hansen et al. forest change data, based
on 650,000 30-m resolution Landsat scenes, would have taken 15 years to process on a
single computer, but was completed on GEE in a matter of days (University of
Maryland 2013). The API also enables near real-time and interactive tools for detecting
and monitoring land cover change (Bey et al. 2016; Hansen et al. 2016).

Software for handling spatial data

In the 20 years since the publication of People and Pixels, growth in the availability of
high spatial and temporal resolution remotely sensed data has coincided with growth in
both software designed to work with spatial data and the ability of general purpose
software to handle spatial data. As of the late 1990s, remotely sensed and other spatial
data were manipulated and analyzed in specialized software packages, such as Esri’s
ArcInfo, Erdas Imagine, ENVI, and GRASS, on stand-alone computers or servers.
These packages, with the exception of GRASS, are commercial products with attendant
cost considerations.

The original spatial software packages have continued to evolve, expand, and
become more accessible to nonspecialists. Open-source geospatial software has also
expanded greatly, leading to the development of organizations like the Open Source
Geospatial Foundation (www.osgeo.org) that, in turn, foster further growth. As a result,
awareness and use of geographic information systems (GIS) and other spatial software
now extend across a broad range of disciplines and educational levels. For example,
GIS is increasingly used in secondary schools in subjects ranging from natural sciences
to history (Kerski et al. 2013).

In addition to specialized spatial software, scholars increasingly use general-pur-
pose, open-source software, such as R, Python, and SQL, to process, analyze, and
integrate remotely sensed data. The availability of support for spatial data in these
general-purpose tools enables researchers to conduct both spatial and nonspatial anal-
ysis seamlessly in a single environment. R and Python are free, widely used, open-
source languages that may be modified and enhanced by any programmer in the world.
R is a programming language and environment focused mainly on statistical analysis
and graphing. The R community has developed spatially oriented packages supporting
geographic data structures, geospatial processing operations, geostatistics, and
geovisualization. These packages allow researchers to integrate remotely sensed and
other spatial data into analytical workflows, which may include statistical modeling or
other statistical techniques, within a single software ecosystem (Lovelace et al. 2018).
R packages for handling spatial data and analysis, like sp (supporting spatial data) and
more recently sf (supporting “simple features”) raster, rgdal, GISTools, spdep, gstat,
and many others, have helped to make R an ideal platform to merge, manipulate, and
display spatial data. Python is an open-source, general-purpose, object-oriented pro-
gramming language used in a wide variety of domains. Software developers have
written Python libraries dedicated to geographic data, including remotely sensed data.
These libraries support spatial data input/output, geoprocessing, visualization, and
spatial statistics and modeling (Rey 2017). Support for spatial data and spatial queries
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has also been incorporated into relational databases, both commercial (e.g., SQL
Server, Oracle) and open source (e.g., PostGIS).

Spatial analysis methods

This paper has primarily focused on the data landscape and the conceptual linkages and
challenges related to contemporary “people and pixels” analyses. Beyond the scope of
this project are the many discussions related to spatial statistics and other statistical or
mathematical models and approaches that are used to analyze these data. As with any
other spatial analysis work, researchers should be aware of the available methods and
their capabilities and limitations for particular applications. Those interested in this area
of research are advised to consider work by Schabenberger and Gotway (2017),
Maxwell et al. (2018), Tong and Murray (2012), Long and Nelson (2013), and many
others.
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