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a b s t r a c t

Wind power forecast uncertainty exposes wind farms to volatile real-time electricity prices and increases
wind power integration costs. Wind power forecast uncertainty could address these challenges and
facilitate the process of siting suitable wind farm locations. In this study, the Analog Ensemble (AnEn) is
employed to generate probabilistic wind speed forecasts at 80-m height using past forecast and analysis
fields from the Global Forecast System (GFS). The AnEn predictions are used as proxy measurements for
how difficult it is to estimate wind speed at different locations in the contiguous United States. The
results show significant spatial variations in the wind speed error over the domain. This measure of
uncertainty is paramount when determining the most suitable locations for large wind farms. We
observed that locations with higher average wind speed are associated with larger degrees of forecast
uncertainty which increases the difficulty to predict wind speed at these locations. Our analysis showed
high correlation between forecast uncertainty and wind power output volatility which indicates higher
risk of operating in real time electricity markets for wind farms located in areas with higher wind speeds.
Further, a simple risk analysis using Sharpe ratio was performed to evaluate the riskiness of wind farms
in the U.S.

© 2019 Published by Elsevier Ltd.
1. Introduction

Wind power is a renewable source that can provide a sustain-
able solution to meet the energy demand of a growing economy,
and at the same time help mitigate the effects of greenhouse gas
emissions associated with traditional fossil fuels. Using wind en-
ergy for a portion of the energy supply also increases energy se-
curity by decreasing the reliance on traditional fossil fuels. Despite
these benefits, relying on wind energy presents challenges due to
the intermittency of wind energy and the uncertainty associated
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with day-ahead forecasts. These challenges primarily arise due to
variable energy output which, unlike traditional generators, is
correlated to rapidly changing local atmospheric conditions [1e3].
These issues must be addressed to assure system stability, reli-
ability, and power quality [4]. As a result, the power system oper-
ators need to incorporate different types of reserve capacity such as
ancillary services and capacity markets to reliably satisfy real-time
demand [5,6]. However, improved forecasting methods that cap-
ture the uncertainty associated with wind forecasts could reduce
the required reserve capacity, facilitate the penetration of wind
power into electricity grids, and decrease wind balancing costs as it
decreases the need for fast ramping of reserve capacity [7e14].
While advanced forecasting could further improve the reliability of
real time and day-ahead electricity markets [11,15,16], generation
resource mix has significant impact on how improved forecasting
capability will influence system operation over different time scales
[17]. Further, good forecasting could reduce wind power curtail-
ment [12] and could help wind farm owners with their optimal
bidding strategies [15,18].
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1.1. Wind power forecasting

There are various methods that can be used for wind speed and
wind power forecasting. Wu and Hong [12] reviewed available
methods for wind power forecasting and categorized these
methods into four groups: numerical weather prediction (NWP)
models, statistical models, Artificial Neural Network (ANN) models
and hybrid models. Soman et al. [15] also categorized wind power
and wind speed forecasting methods into the four mentioned
categories. They argued that NWP models are preferred for long
term forecasting (1 daye1 week ahead) while statistical and ANN
methods perform better over short-term periods (30-min to 6-h
ahead). Multiple other studies have focused on combining different
methods to reduce the error of short-term wind power forecasting
[11,19e32].

Another way to categorize forecasting methods is based on their
methodology and their output; whether they are deterministic or
probabilistic. Probabilistic methods have the advantage of quanti-
fying the uncertainty associated with the forecast [10,14,33].
Knowledge of forecast uncertainty is critical to enabling users of
forecast model output to make informed decisions encapsulating a
range of potential outcomes [34]. Forecast uncertainty could hinder
the performance of gas generators and increase the operational
costs of the power system [14]. It could also hinder integration of
offshorewind power into the grid and increase the required reserve
capacity [35,36].

Zhang et al. [33] reviewed current probabilistic methods on
wind power forecasting and discussed the advantages and chal-
lenges associated with these methods. Ensemble models can be
used to generate probabilistic wind speed/power forecasts and to
quantify the uncertainty of these forecasts. Many of these ensemble
members are created by running a NWP model several times. The
degree of the similarity between ensemble members is often used
to show the uncertainty of the forecast [10]. However, calculating
the forecast uncertainty with ensemble forecast models is
computationally intensive. It grows with each forecast lead time,
and will always be present due to imperfect initial conditions and
numerical approximations required for (NWP) models [37]. The
Analog Ensemble (AnEn), on the other hand, is computationally
efficient as it does not require a NWPmodel to be run several times
and it does not depend on initial conditions [3,38].
1.2. The Analog Ensemble (AnEn)

The AnEn approach is used to generate probabilistic forecasts of
80-mwind speed using a historical repository of NWP forecasts and
corresponding analysis fields. Delle Monache et al. [38] have shown
that the AnEn can generate well calibrated probabilistic forecasts.
In the traditional Delle Monache et al. [38] implementation, a
current deterministic forecast, a set of corresponding historical
forecasts and their verifying observations, and a similarity metric
are used to select the most similar past forecasts to the current
deterministic forecast. In this study, analysis fields are used as the
observational dataset, in lieu of in-situ observations. Once simi-
larity is determined, the analysis corresponding to the best
matching historical forecasts are used to generate a probabilistic
prediction. The definition of the similarity metric is critical to the
AnEn technique. The similarity computes the difference between a
multi-variate current deterministic forecast and a set of historical
forecasts. This action can be thought of as determining ameasure of
distance. In general, and for the purpose of this study, a forecast is
assumed to be a multi-variate time series, where the time
dimension is the forecast lead time of the NWP and the number of
variables is the physical predicted variables output by the NWP.

Previous studies have successfully generated probabilistic fore-
casts using AnEn and have shown its superiority over other
methods [3,38]. Alessandrini et al. [39] used the AnEn to create
probabilistic forecasts of solar power for three solar farms in Italy.
Comparison with Quantile Regression (QR) and Persistence
Ensemble (PeEn) showed advantages to utilizing the AnEn tech-
nique for forecasting rare events. Vanvyve et al. [40] showed that,
when combined with long term historical atmospheric data, the
AnEn technique is capable of evaluating the suitability of wind farm
development in a specific area. They argued that the AnEn provides
an accurate estimate of the uncertainty associated with the fore-
casts and thus “ensure(s) the confidence of investors.” Junk et al.
[41] used a novel predictor weighting method to optimize the
weights on different parameters over different seasons. Their re-
sults indicated that these optimal weights will increase the accu-
racy of the forecasts.

The proposed methodology uses a two-dimensional grid to es-
timate the probability distribution of wind speed (the predictand)
given the values of predictor variables such as temperature, pres-
sure, geopotential height, U-component, and V-component of the
wind. The modified wind power curves and air density values are
used to generate probabilistic wind power forecasts. Our results
provide a grid of wind power values and the uncertainty associated
with each estimate. The uncertainty in estimation is related to
other factors such as topography, land cover, and wind resources.
This is achieved by using a GIS system to compute the correlation
between the uncertainty and geographical characteristics. Further,
the NREL Eastern Wind Dataset is used (which includes more than
1300 simulated wind farms) to calculate several performance
measures (such as capacity factor and output volatility) for each
wind farm. Then, each wind farm is associated with an uncertainty
value. Finally, the correlation between the uncertainty index and
performance measures are calculated. While previous studies have
used standard deviation of wind output as a measure for the risk
associated with wind power [42e44], in this research the correla-
tion between uncertainty and output volatility is used to evaluate
the suitability of this measure (i.e., standard deviation of output) for
determining the risk associated with wind farms.

This study has significant applications for investors in renew-
able energy sector especially wind farm developers. A lower level of
uncertainty facilitates the process of submitting bids into day ahead
and real-time electricity markets. Thus, building wind farms in
regions with lower levels of uncertainty will reduce the real-time
operational risks and create a hedge against volatile real-time
prices. Further, the links between wind estimate uncertainty and
factors such as topography and wind resources, provide wind farm
developers with valuable information regarding wind farm siting.
This research extends the fundamental knowledge of the commu-
nity in understanding the AnEn technique and can address the
knowledge related to uncertainty associated with the variability of
renewable resources, local atmospheric conditions, and the
geographic feasibility of forecasting in and for a region of interest.

Thus, our major contributions to the previous body of research
on wind power forecast and wind forecast uncertainty are: 1)
Implementation of the AnEn in a bigger scale using 2D grid data, 2)
introducing a measure to identify high risk locations for wind farm
development, 3) studying the factors that could influence wind
forecast uncertainty, and 4) evaluating the appropriateness of
standard deviation of output as a measure for riskiness of wind
farms.



M. Shahriari et al. / Renewable Energy 146 (2020) 789e801 791
2. Data

Global Forecast System (GFS) forecasts and analyses are used in
this study. The GFS model is maintained by the National Centers for
Environmental Prediction (NCEP), and it provides global coverage
at approximately 28-km resolution (0.25 by 0.25� grid cells) with
numerous physical variables available to users. For each of the
datasets described, two years worth of data extending from 15
January 2015 to 14 January 2017 have been used. The GFS forecast
data is available in 3-h intervals (ranging from 3-h to 384-h ahead)
and the analysis data is available in 6-h intervals. In order to have
both the forecast and analysis on the same scale, only 6-h intervals
from 6-h to 72-h ahead have been used. This range (6-h to 72-h)
corresponds to unit commitment and generation dispatch time
frame [10]. This time period is important to wind power generators
as it can impact their offers in Day Ahead and Real Time electricity
markets. All historical forecasts used in this study are initialized at
00.00 UTC. The historical GFS forecasts are used for finding the best
analogs and the GFS analysis field as the ground truth to evaluate
the model. Table 1 lists the name of physical variables used in this
study. The selection of these variables was based on previous
literature [38,41]. The independent variable (i.e., variable to esti-
mate) is wind speed at 80-m height and other variables are used to
find the best analogs.

2.1. Partitioning of the data

Studies that focus on estimating a variable divide the data into
two partitions: one partition for training the model and one
partition for evaluating the model. The basic principles imply using
one year for training and one year for testing the model. Here, a
different method was used to increase the accuracy by artificially
increasing the lengths of training and testing periods. This is called
leave one out method where all but one day are used to train the
data and all the remaining days are used to test the model. This
procedure is repeated for all days in the dataset.

3. Methods

3.1. The Analog Ensemble technique

The AnEn technique builds an ensemble of analogs from
deterministic NWP output [38]. Analogs are sought independently
at each GFS grid and for each lead time. The best matching his-
torical forecasts for the current prediction are selected as the an-
alogs. The best match is determined by the metric described in
Refs. [38,45] as follows:

Ft ;At0 ¼
XNv

i¼1

wi

sfi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX~t
j¼�~t

�
Fi;tþj � Ai;t0 þj

�2vuuut (1)

Where Ft is the forecast for which analogs are being sought at the
Table 1
Parameters used in the AnEn model.

Variable (unit) Vertical level

Wind speed (m/s) 10-m, 80-m, and 100-m
Wind direction (�) 10-m, 80-m, and 100-m
Temperature (�C) Surface, and 80-m
Pressure (pa) Surface, and 80-m
Geopotential height (mb) Surface, 500mb, 850mb, and 925mb
Boundary layer height (m) Surface
Gust (m/s) Surface
given time t and At is an historical forecast at time t
0
before Ft . At0 is

found within the search space. The process is repeated indepen-
dently for each grid cell (more than 13,000). Nv and wi are the
number of physical predictor variables used to search for the ana-
logs and their associated weights, respectively. As a circular vari-
able, wind direction is handled using circular statistical measures.
sfi is the standard deviation of the time series of past forecasts of a
given variable at the same location, ~t is an integer equal to half the
width of the time window over which the metric is computed, and
Fi;tþj and Ai;t0 þj are the values of the current and past forecasts time
window for a given variable.

The similarity metric describes the quality of the analog chosen
and is based upon the similarity of the current deterministic fore-
cast window to the past forecast time windows available in the
dataset. Analogs are ranked from most to least similar and can
come from any past date within the training period (also known as
the search space). Next, the corresponding observations for each of
them best analogs are selected, wherem is the number of ensemble
members. Note that the GFS analysis fields are used as the obser-
vational repository. Together, the corresponding observations
generate themmembers of the ensemble prediction for the current
forecast lead time. Delle Monache et al. [38] showed that the AnEn
has several attractive features including the use of higher resolu-
tion forecasts and no need for initial conditions, model perturba-
tion strategies, or post processing requirements. The AnEn is able to
capture flow-dependent error characteristics and shows superior
skill in predicting rare events when compared to state-of-the-art
post processing methods [38,45].

3.2. Persistence ensemble

Persistence methods are generally used as a benchmark to
evaluate the results from a forecasting model [10,19,46]. The
persistence ensemble (PeEn) for each forecast lead time uses the
previous observation values for the same hour. Here, the most
recent 10 observation values (analysis field) were used so the PeEn
has the same number of members as the AnEn. While PeEn is often
referred to as the naive predictor [10], it is capable of producing
consistent and reliable results over short-term predictions. In this
study, the AnEn results were evaluated by comparing them against
the PeEn results.

3.3. Validation metrics

The AnEn method creates a probabilistic forecast of the inde-
pendent variable (wind speed at 80-m) by selecting the best ana-
logs from the past forecasts. To determine the optimal number of
analogs (ensemble members), a brute force approach is used
testing an increasing size of ensemble members (m¼ 5, 10, 15, 20,
25, 30). The correlation between the ensemble mean computed
using a different number of members and the observation value for
each forecast lead time is computed. The bias of AnEn model is also
computed by calculating the difference between the observation
and the ensemble mean at each point in time and then averaging
over all grid cells. The bias shows whether the forecasts have the
tendency to be constantly lower or higher than the observations. A
good forecast model should have a bias very close to zero. In
addition, the root mean square error (RMSE) of the AnEn is
computed by using the following equation:

RMSEAnEn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðAi � OiÞ2
n

s
(2)

Where Ai and Oi are respectively the ensemble mean and
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observation at time i for a single forecast lead time and a single grid.
The RMSE is computed separately for each forecast lead time and
for each gird and then averaged over all forecast lead times and
then over all grid cells to find the average RMSE of the AnEn.
3.4. Forecast degree of difficulty

We proceed by quantifying the degree of difficulty to predict 80-
m wind power over the contiguous U.S. Wind power is influenced
by cubic wind speed:

power¼1
2
:r: cp:A:V3 ¼ k:V3 (3)

where r is air density, cp is the turbine power coefficient, A is rotor
swept area, and V is wind speed (k is used to simplify the expla-
nations). Therefore, wind speed forecasts errors are expected to
increase by the power of three. In other words, a forecast error of
1m/s is not uniformly realized for different values of wind speed.
For example, consider two scenarios: 1) forecast is 7m/s and
observation is 6m/s, 2) forecast is 3m/s and observation is 2m/s. In
the first scenario, wind power forecast shortfall will be equal to
127 k (73� 63), while in the second scenario, the shortfall is equal to
19 k (33� 23). This simple example illustrates the importance of
using an accurate measure to quantify wind power forecast
uncertainty.

Wind power can be calculated by having data on wind speed
and using a power curve of a specific commercial wind turbine.
However, standard wind turbine power curves are based on stan-
dard air density of 1.225 kg/m3 and using a single power curve will
reduce the accuracy of the results. Therefore, in order to create an
accurate measure of wind power forecast uncertainty, data relative
to temperature, pressure and relative humidity were used to
calculate air density for each point in our time series.

The following equation was used to perform the computations:

r¼
�

Pd
Rd : T

�
þ
�

Pv
Rv : T

�
(4)

where r is air density, Pd and Pv are pressure of dry air and water
vapor, Rd and Rv are gas content for dry air and water vapor, and T is
the temperature in Kelvin (available from GFS dataset). Rd and Rv
are respectively equal to 287.05 and 461.495 j

kg : degK. Vapor pres-
sure is calculated as:

Pv ¼ RH : Es (5)

where RH is relative humidity (available from GFS dataset) and Es is
saturation vapor pressure which is calculated as:

Es ¼ c0 : 10:
c1 : Tc
c2þTc (6)

Tc is the temperature in degree Celsius, and c0, c1 and c2 are some
constants and their values are respectively equal to 6.1078, 7.5 and
237.3. After calculating the vapor pressure, air pressure was
computed by subtracting vapor pressure from total pressure:

Pd ¼ P � Pv (7)

where P is the total air pressure (available from GFS dataset). Next,
the turbine power curve (Vesta V90 2MW turbine) was defined by
using the data available at [53] and fitting a parametric logistic
function on wind speed and wind power. Previous studies have
shown that power curves created by parametric logistic functions
have high accuracy [54e56].
Since the curve changes for different values of air density, an air

density correction was applied and used to calculate wind power
production more accurately. The air density correction simply cal-
culates a normalized (corrected) wind speed based on the new air
density. The standard wind turbine power curves are based on the
standard air density of 1.225 kg/m3; therefore, if air density is below
or above the standard air density, the following correction should
be incorporated:

Vnorm ¼ Vsd :

�
rnorm
rsd

�1
3

(8)

where Vnorm and Vsd are respectively the normalized wind speed
(wind speed at new air density) and standard wind speed (wind
speed at standard air density), and rnorm and rsd are the normalized
air density and standard air density. Therefore, after estimating
wind speed by using the AnEn method, the above correction is
applied to calculate a normalized wind speed (i.e., corrected wind
speed based on the actual air density) and then use the wind power
curve (Fig. 8) to calculate wind power output. This same method is
used to calculate wind power for both the AnEn forecasts and GFS
analysis.

The standard deviation of the ensemble members is used to
calculate the ensemble spread for each point in time. For example,
if the estimated wind power from an AnEnmodel with 10members
provides the following values in kW: (450, 370, 650, 530, 540, 490,
520, 560, 470, 540) for forecast lead time f, the standard deviation
of these ensemble members (74 kW) is used as a proxy for the
degree of difficulty to predict wind power. This is based on the
notion that as a probability distribution becomes wider (higher
standard deviation), forecasting becomes more challenging and the
forecast accuracy decreases. Therefore, forecast degree of difficulty
(FDD) is defined as the standard deviation of ensemble members
(ensemble spread). For each grid, the ensemble spread is computed
for each point in time. The FDDwould be calculated by averaging all
these ensemble spreads for each of the grid cells.

4. Results

4.1. Results validation

Fig. 1 shows how bias, correlation and RMSE changes as the
number of ensemble member increases. Increasing the number of
ensemble members increases both bias and correlation which
shows a trade-off between increasing the correlation and
decreasing the bias. For the RMSE, however, an inflection point
could be observed at 15 ensemble members. Based on RMSE and
correlation values, the optimum number of ensembles should be a
number between 10 and 20. As the number of ensemble member
increases from 10 to 20, the percentage increase in bias is larger
than the percentage increase in correlation and the percentage
increase in RMSE. Further, increasing the number of ensemble
members could impact other measures such as statistical consis-
tency and reliability of the AnEn forecasts. Because of the results
from this analysis 10 ensemble members were found to be the best
number for this study.

4.1.1. RMSE
Fig. 2 shows the RMSE for GFS and AnEn for all grid cells in the

contiguous United States. RMSEGFS has been calculated by using GFS
forecast as prediction and GFS analysis as observation. To calculate
RMSEAnEn, GFS analysis field is used as observation and ensemble



Fig. 1. a) Bias, b) correlation, and c) RMSE for different number of ensemble members. The main plots show the average value over all grid cells while the insets show the average
values plus the 5th and 95th percentiles (identified by the error bars).

Fig. 2. Root mean square error (RMSE) of AnEn and GFS for all grid cells in the contiguous U.S.

Fig. 3. Normalized root mean square error (nRMSE) of AnEn and GFS for all grid cells in
the contiguous U.S.
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mean as prediction. For each grid and for each forecast lead time,
the ensemble mean was calculated by averaging over all members
for each point in time. The RMSE calculates the standard deviation
of the errors and illustrate how far the forecasts are from the best
fitted line (i.e., how close the forecasts are to the observations).
Thus, lower values of RMSE are preferred as they relate to smaller
differences between forecasts and observations. The AnEn per-
forms better than GFS especially in locations over the East Coast
and the Midwest. In general, locations with higher wind speeds
have higher RMSEs. This means that predicting wind speed at these
locations would be more difficult and the forecasts are associated
with higher degrees of uncertainty. (Refer to Fig. A.11 in Appendix
for a U.S. Wind Resource Map.)

Fig. 3 shows the normalized RMSE (nRMSE) for GFS and AnEn
methods over the contiguous U.S. The RMSE values are normalized
by calculating the ratio of RMSE tomean observation (averagewind
speed at 80-m) for each point in time. The AnEn performs better
than GFS in almost all grid cells especially over the eastern U.S. The
nRMSE is useful for evaluating forecast error on a percentage term.
This measure calculates forecast error as a percentage of wind
speed and provides a tool for evaluating forecast uncertainty by
considering the spatial variability of wind resources.

Further the differences between RMSEAnEn and RMSEGFS were
calculated and as well as nRMSEAnEn and nRMSEGFS by respectively
subtracting RMSEGFS from RMSEAnEn and nRMSEGFS from nRMSEAnEn.
Fig. 4 shows these differences; the left panel shows the RMSE dif-
ference (RMSEAnEn - RMSEGFS) and the right panel shows the nRMSE
difference (nRMSEAnEn and nRMSEGFS). As expected, the maps look
identical and show that AnEn is performing better than GFS over all
locations. There are few locations where the GFS is doing better
than AnEn but the difference is not statistically significant (differ-
ence is less than 0.01). The evident difference between East and
West U.S. in Fig. 4 is due to the following reasons: 1) Lower wind
speed and therefore lower spread in the East, 2) Different weather
regiments making it easier to predict the weather in the East, 3)
AnEn performance is worse inmountainous areas where prediction
is more challenging.
4.1.2. Probabilistic validation methods
Further, several tests were performed to evaluate the statistical

consistency, reliability, sharpness, resolution, and value of the AnEn
probabilistic forecasts. To perform these tests, two different
methods were used. In the first method, 10 grid cells were chosen
(from more than 13,000 available over the Contiguous U.S.) based
on their RMSEAnEn. After calculating the RMSEAnEn for all grid cells,
the 10th, 20th, …, 100th percentiles of these RMSEs were
computed. By using these percentiles, the data were partitioned
into ten groups (smaller than 10th, between 10th and 20th, and so
on) and then 1 grid from each group was randomly chosen. Finally,
all the tests on these 10 grid cells were performed. In the second
method, data from all grid cells were considered and the tests were
performed as if they were all from a single grid. Figures for the first



Fig. 4. Left panel shows the RMSE difference (RMSEAnEn - RMSEGFS) and the right panel shows the nRMSE difference (nRMSEAnEn - nRMSEGFS).

Fig. 5. a) Rank histogram: The black horizontal line shows how a perfectly flat rank histogram should look, b) dispersion diagram: The black line shows the RMSE of the ensemble
mean and the dashed red line shows the average ensemble spread. The error bars show the 5th and 95th quantiles for the RMSE, and c) spread-skill: The dashed red line shows the
perfect spread-skill relationship. These plots include the results from all grid cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. Reliability diagrams for all grid cells. The black line with error bars shows the
reliability line and the blue line shows the sharpness. The black dashed line is sample
climatology (observed frequency of wind speed greater than 5m/s) and the red dashed
line is the perfect reliability line. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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method are included in the Appendix.
First, the statistical consistency of the analog ensembles was

measured. Anderson [47] defines a consistent ensemble as an
ensemble whose members follow the same distribution as the
sample distribution fromwhich the members are chosen. Basically,
n þ 1 bins (n is the number of ensemble members) were chosen
and then determined which bin each observation belongs to. If an
ensemble is statistically consistent, then an observation could
belong to any rank i (i¼ 1: n þ 1). In other words, the rank histo-
gram for the ensembles is expected to be flat. This means that the
probability of an observation being bigger or smaller than the
members should be equal. Panel (a) of Fig. 5 shows the rank his-
tograms for all grid cells in the contiguous U.S. Although the rank
histogram is not completely flat and shows a slight tendency to-
wards over dispersion, in general the AnEn has a very promising
statistical consistency.

While the rank histograms illustrate the statistical consistency
of the model averaged over all forecast lead times, dispersion dia-
grams are capable of showing the statistical consistency of the
model over all forecast lead times. In a dispersion diagram, vari-
ability of two parameters are shown over various forecast lead
times: RMSE of the ensemble mean and average ensemble variance
(ensemble spread). For a statistically consistent ensemble, these
two parameters should be very close and highly correlated. Panel
(b) of Fig. 5 shows the dispersion diagram for all grid cells. The two
measures almost overlap each other which exhibits good statistical
consistency of the AnEn.

Another useful measure for determining the statistical consis-
tency of an ensemble model is the spread-skill diagram. This dia-
gram is created by binning the ensemble spread (in this work,
specifically, using 10 bins) and plotting it against root mean square
error (RMSE) of the ensemble. The advantage here is that RMSE is
not being computed against average spread, but rather compared at
all values of the ensemble spread [38,48,49]. Thus, for an ensemble
to be statistically consistent, ensemble RMSE and ensemble spread
must be equal for all values of the ensemble spread. Panel (c) of
Fig. 5 shows the spread-skill diagrams for all grid cells. Ensemble
RMSE and ensemble spread are very close for almost all values of
the ensemble spread. This exhibits the statistical consistency of our
AnEn method.

Further, the reliability of the ensemble results is tested by using
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the reliability diagram. An ensemble is reliable if the forecasted
probability of observing an event is equal to the actual observed
frequency. A reliability diagram evaluates this condition by plotting
the forecast probability against the observed relative frequency
[38]. This is achieved by binning the observed occurrences and
calculating the observed relative frequency for each bin by dividing
the number of observed occurrences by the number of forecasts
[50]. Thus, a completely reliable model should follow a 1:1 diagonal
line [38,51]. Another important measure to verify an ensemble is
the sharpness of the model. If a model produces forecast values
closer to the edges (0% or 100%) then it is said that the model is
sharper. This measure is important as “a sharper forecast leads to
better resolution” [38]. Fig. 6 shows the reliability and sharpness
diagrams for all grid cells. The observed frequency and the forecast
probability match closely which shows the reliability of the AnEn
model. Further, the AnEn sharpness is evident as the highest values
are observed along the extreme probabilities (0% or 100%).

The Brier skill score (BSS) is often used to evaluate the accuracy
of a probabilistic forecast [52]. This measure is decomposed into
three elements: reliability, resolution, and uncertainty [38,39]. The
uncertainty does not depend on the model and is only influenced
by the sample climatology. The resolution shows the model ability
to forecast whether an event occurs or not. The reliability measures
the similarity between the forecasted probabilities and the true
probabilities. A good probabilistic model should have high resolu-
tion and low reliability (best value is 0). The reliability and reso-
lution of the AnEn model is compared with the reliability and
resolution of the PeEn model. Panel (a) of Fig. 7 shows the BSS for
AnEn and PeEn. Panel (b) of Fig. 7 shows the reliability of the AnEn
and PeEn models. The reliability values for AnEn is much smaller
than PeEn which shows its superiority over PeEn. Panel (c) of Fig. 7
shows that the AnEn has a much higher resolution than the PeEn
model.

Finally, the continuous ranked probability score (CRPS) of the
AnEn and PeEn models was calculated. CRPS uses the full proba-
bilistic distribution (where reliability diagrams and BSS use values
above a threshold, i.e., wind speeds above 5m/s) to compare
Fig. 7. a) BSS, b) reliability, and c) resolution for AnEn (black) and PeEn (red) for all grid
cells in the contiguous U.S. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
several ensemble systems [39]. Lower CRPS scores are preferred as
they illustrate that the cumulative distribution function (CDF) of
the probabilistic forecasts are very similar to the CDF of the ob-
servations. Panel (d) of Fig. 7 also shows the CRPS plots for the AnEn
and PeEn models. The AnEn model has lower CRPS values which
shows it superiority over PeEn in creating probabilistic distribu-
tions of the forecasts.
4.2. Results discussion

Based on the discussion in section 3.4., ensemble spread and
normalized spread are used to show the degree of difficulty to
predict wind speed. Fig. 8 shows the ensemble spread and
normalized ensemble spread for wind power estimates for all grid
cells in the contiguous U.S. The highest values of the ensemble
spread are observed along the Midwest which could be related to
higher average wind speed in these areas. A normalized ensemble
spread measure was computed where the ensemble spread was
divided by the average wind power for each point in our time
series.

This work also discusses the measure that should be used to
assess the degree of difficulty to predict wind power at different
locations. While, it can be argued that providing a fair comparison
between different locations requires normalizing the difficulty
measure based on average wind power estimates, in a real-world
situation it might not differ how large the forecast error is rela-
tive to the estimated value. In some electricity markets, for example
MISO (Midcontinent Independent System Operator) and CAISO
(California Independent System Operator),3 the deviation from the
submitted offer results in stiff penalties for the wind generators.
Therefore, submitting an offer to the day ahead auction requires
accurate estimate of hourly wind generation output for the next
day. The system operators do not differentiate offers based on their
average wind speed or average wind output. Indeed, the penalties
are determined solely based on absolute deviation from the sub-
mitted offer in terms of MW. Therefore, in markets like MISO and
CAISO, the degree of difficulty would be most appropriately
expressed by the ensemble spread. Though, in some markets like
PJM,4 there is no penalty for deviation from the submitted sell offer,
building wind farms in regions with higher predictability will
decrease system costs of integrating renewables into the grid.

To further investigate why FDD is higher in some regions, the
correlation was computed between the ensemble spread and wind
power class, elevation and land cover. Data for wind power class is
based on wind power classes from NREL [57]. Elevation data was
obtained from Ref. [58] and land cover data was obtained from
Ref. [59]. Fig. 9 shows the maps for these four variables. Table 2
shows the correlation of ensemble spread with wind power class,
elevation and land cover. The results indicate that the highest
correlation is between ensemble spread and wind speed which
exhibit the difficulty of estimating wind power at locations with
higher average wind speed. The correlation between the ensemble
spread and elevation is very small which suggests that estimating
wind power at higher elevations is not more difficult than esti-
mating wind power at lower elevations.

Further, the relationship was studied in depth between wind
farm performancemeasures such as capacity factor, firm power and
volatility. Firm power is defined as the amount of power (i.e., ca-
pacity) that is available 79 to 92% of time [60,61]. Volatility is the
3 Entities that oversee power market operations in their respective region and
monitor grid reliability.

4 Regional Transmission Organization that oversees power market operations in
Northeast U.S.



Fig. 8. Wind power ensemble spread and normalized ensemble spread for all grid cells in the contiguous U.S.

Fig. 9. Maps for a) ensemble spread, b) wind power class, c) elevation, and d) land
cover. Refer to Ref. [59] for more details on land cover legend.

Table 2
Ensemble spread correlation with wind power class, elevation, and land cover.

Variable Wind Power Class Elevation Land Cover

Correlation 0.58 �0.12 0.32

Table 3
Ensemble spread correlation with wind sites capacity factor, volatility, and firm
power.

Variable Capacity Factor Volatility Firm Power 79%

Correlation 0.96 0.95 0.8

Fig. 10. Sharpe ratio for hypothetical wind farms in contiguous U.S.
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standard deviation of wind power output. For this analysis, the
analysis field from GFS is used to calculate the standard deviation,
firm power, and capacity factor for each grid in the contiguous U.S.
The assumption here is that each grid (i.e., each GFS grid) is an
individual wind farm with a single 2MW wind turbine. Table 3
shows the correlation between the wind power ensemble spread,
and wind sites performance measures. The results indicate that
wind power ensemble spread is relatively highly correlated with
capacity factor, standard deviation and firm power. This basically
shows that locations with higher wind power potential (i.e., higher
average wind speeds) are more vulnerable to forecast uncertainty.
High correlation between wind power ensemble spread and
volatility exhibit that higher standard deviation of powerwill result
in higher forecast uncertainty. In other words, volatility is a good
indicator of how risky a wind site would be in terms of forecast
uncertainty.

Finally, the riskiness of these hypothetical wind farms was
evaluated by using the Sharpe ratio. In finance, Sharpe ratio is
defined as the ratio of return to risk. In energy studies, the average
wind power and standard deviation of wind power are used as
proxies for return and risk [42,62]. Here, return is quantified by
average wind power and risk is measured by the ensemble spread.
Fig. 10 shows the Sharpe ratio for all hypothetical wind farms in the
contiguous U.S. Locations along the Midwest (i.e., those with higher
average wind speed and higher uncertainty) have higher Sharpe
ratios. This means that while these locations have higher forecast
uncertainty, they provide higher return per unit of risk. The higher
Sharpe ratio implies that the higher return (i.e., average wind po-
wer output) of wind sites in this region justifies the higher levels of
risk associatedwith thesewind sites. In general, our results indicate
a trade-off between return/risk ratio and forecast uncertainty.
Wind farms located in the Midwest will provide higher revenues
(as a result of larger wind generation) but they also present chal-
lenges in terms of forecast uncertainty. This could increase real-
time operational risks as wind farms would be more vulnerable
to volatile real time prices.
5. Conclusion

We have used the AnEn approach to measure the uncertainty of
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wind power estimates and to quantitatively understand how the
difficulty to estimate wind power varies over different locations in
the contiguous U.S. Our results indicate that ensemble spread is an
appropriate proxy for forecast degree of difficulty. This means that
we can use the ensemble spread to calculate the uncertainty
associated with wind power forecast in different locations and
determine the locations where forecasting wind speed is more
challenging. It was observed that locations with higher average
wind speed are associated with higher forecast uncertainty. This
means that wind power forecasting in these areas is more chal-
lenging and wind sites are exposed to volatile real time electricity
prices. Building wind sites in these regions presents trade-offs in
terms of higher return and higher risk.

While previous studies frequently use standard deviation of
output to measure how risky a wind site is in terms of output
volatility [42,62], the suitability of this measure as a proxy for the
degree of difficulty to estimate wind power has not been evaluated.
Our results illustrated high correlation between output volatility
and forecast uncertainty. This basically means that locations with
higher output volatility are associated with higher forecast uncer-
tainty. Further, it was found that ensemble spread is highly corre-
lated with capacity factor and firm power. Finally, the Sharpe ratio
showed that locations in Midwestern states (i.e., locations with
higher average wind speed) provide higher return per unit of risk.

This work has major policy implications for wind site investors.
First, output volatility is shown to be a perfect indicator of the
degree of difficulty to estimate wind power. Degree of difficulty
Fig. A.11. Annual average wind speed in US. (Wind resource estimates are developed by AW
images/80m_wind/USwind300dpe4-11.jpg)
(i.e., forecast uncertainty) could only bemeasured by a probabilistic
method. Output volatility, on the other hand, can be evaluated
using a deterministic forecast and hence loosen the requirements
for more complicated probabilistic forecasts. Further, in general
locationswith higher averagewind speed provide higher return per
unit of risk. This means that higher average production in these
areas could justify the higher volatility and forecast uncertainty of
the wind sites in these regions. Despite this potentially profitable
result, however, risk averse investors could still choose locations
with smaller volatility and forecast uncertainty to reduce real time
operational risks.
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Appendix A

Appendix A.1. U.S. Wind Speed Map

Figure A.11 shows U.S. annual averagewind speed calculated 80-
m height. Wind speed estimates have been calculated by AWS
Truepower and the map has been created by NREL.
S Truepower and the map has been created by NREL. Source: https://www.nrel.gov/gis/

https://www.nrel.gov/gis/images/80m_wind/USwind300dpe4-11.jpg
https://www.nrel.gov/gis/images/80m_wind/USwind300dpe4-11.jpg
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Appendix A.2. Rank Histograms

Figure A.12 shows the rank histograms for the selected 10 grid
cells. RMSEAnEn increases as we move from left to right and top to
bottom. In other words, the top left grid has an RMSEAnEn in the first
decile and the bottom right grid has an RMSEAnEn in the last decile.
Fig. A.12. Rank histograms for the 10 selected grids. RMSE increases as move from left to right and top to bottom.
Appendix A.2. Dispersion Diagrams

Figure A.13 shows the dispersion diagrams for the selected 10
grid cells. In all grid cells, the two measures almost overlap each
other which exhibits good statistical consistency of the AnEn.
Fig. A.13. Dispersion diagrams for the 10 selected grids. The black line shows the RMSE of the ensemble mean and the dashed red line shows the average ensemble spread. The error
bars show the 5th and 95th quantiles for the RMSE.
Appendix A.3. Spread Skill Diagrams

Figure A.14 shows the spread-skill diagrams for the 10 selected
grid cells.
Fig. A.14. Spread-skill plot for the 10 selected grids. The dashed red line shows the perfect spread-skill relationship.
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Appendix A.4. Reliability Diagrams

Figure A.15 shows the reliability and sharpness diagrams for the
selected 10 grid cells. Over all grid cells, the observed frequency and
the forecast probability match closely. Further, the AnEn sharpness
is illustrated by high values along the extreme probabilities (0% or
100%).
Fig. A.15. Reliability diagrams for the selected 10 grids. The black line with error bars shows the reliability line and the blue line shows the sharpness. The black dashed line is
sample climatology (observed frequency of wind speed greater than 5m/s) and the red dashed line is the perfect reliability line.
Appendix A.5. BSS

Figures A.16, A.17, A.18 show the BSS, reliability and resolution
plots for the selected 10 grid cells. These plots show that AnEn
performs much better than PeEn.
Fig. A.16. Briar skill score (BSS) of AnEn (black lines) and PeEn (red lines) for the selected 10 grids.

Fig. A.17. Reliability of AnEn (black lines) and PeEn (red lines) for the selected 10 grids.



Fig. A.18. Resolution of AnEn (black lines) and PeEn (red lines) for the selected 10 grids.
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Appendix A.6. CRPS

Figure A.19 shows the CRPS for the selected 10 grids. AnEn has a
lower CRPS compared to the PeEn.
Fig. A.19. Continuous ranked probability score (CRPS) of the AnEn and PeEn models for the selected 10 grids.
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