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Abstract. The goal of this research is to develop a general deep learning solution for atmos-
pheric correction and target detection using multiple hyperspectral scenes. It is assumed that the
scenes differ only in range and viewing angles, that they are acquired in rapid sequence using
an airborne sensor orbiting a target, and that the target and the atmosphere remain invariant
within the time scale of the collection. Several hundred thousand hyperspectral simulations were
performed using the MODTRAN model and were used to train the deep learning solution, as
well as to validate the proposed method. The input to the deep learning solution is a matrix of
the simulated radiances at the sensor as function of wavelength and elevation angles. The output
is atmospheric upwelling, downwelling, and transmission. This solution is repeated for all or a
subset of pixels in the scene. We focus on emissive properties of targets, and simulations are
performed in the longwave infrared between 7.5 and 12 μm. Results show that the proposed
method is computationally efficient and it can characterize the atmosphere and retrieve the target
spectral emissivity within one order of magnitude errors or less when compared with the original
MODTRAN simulations. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.14.024518]
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1 Introduction

The increasing spectral–spatial resolution of hyperspectral imaging (HSI) enables more accurate
analysis for target detection and classification. The general goal of image spectroscopy, or hyper-
spectral remote sensing, is to measure emitted or reflected radiation at hundreds of narrow and
continuous spectral wavelengths collected remotely from air-borne or space-borne platforms.1

Hyperspectral image analysis is used to identify with confidence surface solid materials,
liquids, or atmospheric gases based on their spectral signatures.2–5 Except when temperature
reaches absolute zero, all objects emit electromagnetic radiation, and most objects also reflect
electromagnetic radiation emitted by other sources.6 One of the most important steps in remote
sensing image analysis consists of taking into account the atmospheric radiative transfer process,
which causes attenuation of the signal as measured at the sensor.7 A careful atmospheric char-
acterization and correction is paramount to quantify the atmospheric effects and to derive accu-
rate surface target properties.

The current state-of-the-art approach to accounting for atmospheric influence on hyperspectral
scenes is based on algorithms and tools developed in the early 1990s and continues to pervade in
operational, research, and development activities.8–11 These methods have demonstrated opera-
tional success and are ensconced in existing algorithms and software. However, many simplifying
assumptions or expedient processing steps are made in this process.
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At the foundation of these approaches is the fundamental radiative transfer equation (RTE),
which defines the reflective and emissive spectral radiance components of the image scene and
its three-dimensional surroundings, as well as detailed atmosphere profiles (e.g., gas and aero-
sols) as a function of altitude and pressure. Because of the combined effects of variations in a
material’s physical properties, sensor noise, as well as uncertainty in atmospheric parameters and
the difficulty associated with temperature-emissivity separation, leads to inherent variation
observed in remote sensing data and makes the parameter estimation of the traditional RTE
very challenging.12

The most significant error occurs in atmospheric correction in which a single geometric
solution for all elements of the RTE is applied to every pixel of a spectral image.13–15 We know
this solution to be expedient, but it is also error inducing. Another significant shortcoming con-
sists of analyzing a single hyperspectral image at a time. In other words, every image is an island.
This individual image analysis is driven primarily by the limits of sensors and collection plat-
forms with optimal scene collection consisting of a nadir looking scan of the target area. These
existing solutions lag behind the revolution in computational power, artificial intelligence, and
agile sensors and platforms.

These solutions have been shown to fail under varied environmental conditions, obscuration
due to clouds, and target material conditions. It can be said that today’s analysis is effective in
performing material identification in optimal collection conditions. It can also be said that, in
nonoptimal conditions such as cloudy scenes, shadows, intimate mixtures of materials, liquid
spills and residues, or any combination of the above, material identification of solids, liquids, or
gases is ineffective, unrepeatable, or subject to unknown levels of uncertainty. We hypothesize
that this gap in effectiveness stems from the incomplete solution of the RTE that a single hyper-
spectral image and existing analysis methods afford.

It is theoretically possible to achieve higher accuracy by analyzing spectra relative to the
same target pixels if they are acquired in multiple individual scenes collected in rapid sequence
and at different angles. Collecting these scenes requires gimballed instruments with attitudes
that can be dynamically adjusted during collection, which overcomes the fixed nadir looking
geometries of past instruments.16 Using advanced algorithms that can ingest and analyze multi-
ple scenes with varying atmospheric contributions is also required. There are currently no estab-
lished solutions to the RTE that take into account spectra acquired simultaneously from multiple
angle geometries.

In addition to imaging a particular scene location, the agile sensor can also image the back-
ground and the atmosphere itself to better estimate additional components of the RTE. While the
previous generation of sensors has a scene revisit time of minutes to days, the current generation,
and even more so the next, has a scene revisit time of as little as a few seconds. The ability to
collect rapid sequences of hyperspectral scans under different angles provides an unprecedented
dataset. This combination of multiple scans and geometric diversity forces us to re-evaluate the
fundamental RTE for its full spatial dimensionality and temporal component.

There are three objectives in our research:

1. Expand the solution of the current RTE for full geometric diversity to exploit multiscan
hyperspectral images simultaneously;

2. Develop a deep learning approach to estimate different components of the expanded RTE
under different atmospheric conditions;

3. Apply the deep learning solution to the target detection.

The motivation of this research is to provide a well-defined deep learning solution to com-
pensate for atmospheric influence on the total radiance received at the sensor and to retrieve the
target spectral properties that enable the identification of target materials in scenarios and envi-
ronments, of which no current or planned hyperspectral image exploitation system is capable.
Compared with traditional state-of-the-art approaches using the RTE, this approach makes use of
the computer ability of artificial intelligence, which can better learn the nonlinear relationship
and complex interactions between atmosphere and different radiative components passing
through it. This can enhance the current state-of-the-art in hyperspectral remote sensing research
and drive future hyperspectral sensor performance requirements and concepts of atmospheric
characterization and target detection operations.
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To properly test the proposed approach, two steps must occur.

1. Develop a solution using simulated data because it is necessary to test the proposed
approach in an idealized environment in which all variables can be controlled and
an estimation of the sources of error can be precisely quantified. Furthermore, deep
learning-based solutions require hundreds of thousands of examples and counter-
examples to learn. It is probably unfeasible and not cost effective to train the system
on real-world collected data; further, simulated data should contain the general under-
lying relationships that are also present in the real-world data and that the system has to
learn. Finally, an initial simulated solution is necessary for the collection of real-world
data; basically it drives what data to collect in terms of target and ground truth and what
aspects of the method should be particularly tested in a real-world setting.

2. Collect hyperspectral remote sensing scenes that can help validate the proposed approach
in controlled but realistic real-world settings. Data collection is generally time consum-
ing in terms of preparing for the collection and the collection itself, especially when that
ground truth measurements are to be collected at the same time as the aerial collection.
To test the methodology, it is necessary to collect atmospheric characteristics along
with target characteristics, which greatly increases the complexity of the collection.
Furthermore, data collections can be very expensive, especially in the longwave part
of the spectrum.

This research describes the first of these two necessary steps, namely providing results of the
methodology as applied to simulated data. The results presented in this article were used to plan a
data collection campaign, called Nittany Radiance 2019, that occurred on the premises of the
Pennsylvania State University campus in April 2019.17 The analysis of Nittany Radiance 2019
is still ongoing and will be reported at a later time. Several of the assumptions made with regards
to spectral range, resolution, and collection geometry are chosen to meet the characteristics of
Blue Heron. This instrument, built by the Harris corporation, has two focal plane arrays with 258
detectors each, 256 spectral channels, and a spectral range of nominally 7.5 to 13.5 μm.18

This article is organized as follows: Sec. 2 discusses the methods, including current state-of-
the-art solutions to RTE. This section describes the overall solution and introduces the assump-
tions made, as well as the expected errors that we expect to achieve. Section 3 presents the results
obtained and the overall accuracy achieved. Finally, Sec. 4 summarizes the research in terms of
the results obtained and limitations to the proposed solution.

2 Methods

Different surface targets absorb or reflect solar and other objects’ electromagnetic radiation in
different ways. The spectral reflective or emissive properties of a surface target depend on the
material type, its physical and chemical conditions, and the solar and sensor geometries. The
different spectral signatures of surface materials make it possible to classify them from remote
measurements.

2.1 Radiative Transfer Equation

A purely physics based state-of-the-art RTE describes the flow of radiative energy through differ-
ent media as a mathematical process of absorption, reflection, and scattering from a target to a
sensor. For the case of a downlooking view at a target, the total observed spectral radiance is
denoted as

EQ-TARGET;temp:intralink-;e001;116;147

Lλ ¼
�
Esλ cos στ1ðλÞ

rðλÞ
π

þ εðλÞLTλþ ½FðLdsλþLdελÞþ ð1−FÞðLbsλþLbελÞ�rðλÞ
�
τ2ðλÞ

þLusλþLuελ; (1)

where s represents the solar component, ε is the self-emitted thermal component, b is the back-
ground involved component, and d and u are the downwelling and upwelling components,
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respectively.10 The shape factor F represents the fraction that the hemisphere is obscured by
background objects, shown in Fig. 1. All other elements in Eq. (1) are listed in Table 1.

The RTE requires the calculation of the direct or scattered solar and atmospheric downwel-
ling and upwelling radiance, the atmospheric transmission, and the target reflectivity. Numerous
computational codes are available to solve the RTE. Their accuracy and speed of calculations
depend on the implemented parameters and models. For example, Pstar uses the discrete ordinate
method (DOM), which is applied to a single homogeneous layer to obtain the discrete ordinate
solution and then the atmospheric molecular and aerosol scattering are calculated with a small
number of discrete ordinate directions. It is efficient for an optically thin atmosphere profile, such
as clear sky and background aerosol.19

Another solution to the RTE is found by MYSTIC, which uses a Monte–Carlo optimization
method (MC).20,21 Compared with the DOM, the MC method allows users to define complex
clouds and aerosols and inhomogeneous atmosphere profiles with the guarantee of a higher accu-
racy. However, it is more computational expensive and has its own inherent statistical noise.

SOSVRT uses the successive-order-scattering method, which models the atmospheric scat-
tering effect by the integration of all orders of scattering along the line-of-sight (LOS) path.22

It is accurate in quantifying the atmospheric scattering radiance, but it is inefficient at achieving
the computational convergence for optical thick medium or oblique observation angles.

Finally, RAY uses the doubling–adding technique to approximate the vertical inhomo-
geneous atmospheric layers by a large number of small parallel homogeneous layers.23 It pro-
vides a trade-off between the time and accuracy, which can save additional running time because
of its symmetrical and reciprocal relationships for calculating.

Fig. 1 Shape factor F .

Table 1 Parameters in RTE.

Parameters Values

Esλ Solar spectral irradiance

σ Solar incident angle

r ðλÞ Target spectral reflectivity

εðλÞ Target spectral emissivity

F Shape factor of visible atmosphere to the target

τ1 Atmospheric transmission from the Sun to the target

τ2 Atmospheric transmission from the surface to the sensor

LT λ Spectral radiance of a blackbody at temperature T

Ldsλ þ Ldελ Solar and atmospheric downwelling spectral radiance

Lbsλ þ Lbελ Background reflected and self-emitted spectral radiance

Lusλ þ Luελ Solar and atmospheric upwelling spectral radiance
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It was found that all of these codes give very similar results, which is intuitive because they
try to solve numerically the same physical phenomenon.24 Herein lies the vulnerability of a tradi-
tional mathematical-based solution that relies on a single viewpoint. Because the geometry of the
problem is vastly simplified, the single solution is applied to every pixel of the scene regardless
of its geometry or local conditions to arrive at the target.

There is a potential transformative solution to improve the current state-of-the-art solutions
that a single hyperspectral image affords by leveraging recent advances in computational and
data science. Artificial intelligence and machine learning (ML) in general, and deep learning
techniques more specifically, give a new perspective on how to solve the RTE using the avail-
ability of large amounts of multiple hyperspectral image scans. We hypothesize that this new
multiscan geometry can provide a more accurate atmospheric characterization and can target
detection by analyzing spectra of same target pixels acquired in multiple individual scenes
collected in rapid sequence and at different angles.

This research proposes using a deep learning approach to learn the relationship between the
total radiance received at the sensor Lλ and different solar and atmospheric components as a
function of geometric angles that can be used for atmospheric correction in real time and with
limited computational resources, so it can be efficiently implemented into a real-time hardware
solution.

2.2 Data Simulation and Collection

The proposed deep learning solution consists of two main steps. The first is the training of the
network, which is generally a time consuming and computationally expensive task, and the
instantiation of the solution, which is a very quick process. Deep learning networks require large
amounts of data to internally build a concept representation of the relationships between the
input and output, and thus it is more practical to use simulated versus observed data to generate
the required large dataset.

Synthetic data are generated using the MODTRAN software to simulate the total radiance,
upwelling, downwelling, and atmospheric transmission for different geometric angles, atmos-
pheric models, time of the day and year, and specific targets with varying reflectivities.8,25 It is
assumed that data are collected at different angles using an airborne sensor, shown in Fig. 2(a).
Several simplifications and assumptions are made here:

1. The airborne sensor is assumed to have a spectral resolution of 17.5 nm between 7.5 and
12 μm, which reflects the characteristics of the Blue Heron sensor.

2. The target is located at ð40.7934;−77.86Þ, which lies within the Pennsylvania State
University campus.

3. The sensor is assumed to be orbiting around the target with a fixed range of 5 km.
4. The target is located in an open area. Therefore, the shape factor F ¼ 1 and the back-

ground components Lbsλ; Lbελ can be omitted from Eq. (1):

Fig. 2 Geometric setting and MODTRAN simulated components.
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EQ-TARGET;temp:intralink-;e002;116;735Lλ ¼
�
Esλ cos τ1ðλÞ

rðλÞ
π

þ εðλÞLTλ þ ðLdsλ þ LdελÞrðλÞ
�
τ2ðλÞ þ Lusλ þ Luελ: (2)

5. The simulated target used for training is an opaque Lambertian gray body with a con-
stant emissivity across the spectrum, although this constant value varies across the
simulations.

6. The multiple simulated targets used for the validation have varying emissivity that
correspond to real-world objects, such as polyethylene.

The current work provides a framework to learn the relationship between the at-sensor radi-
ance and different atmospheric and solar components under a given geometric setting and can be
easily adjusted to exploit different spectral and physical range parameters. All parameters used
for the MODTRAN simulation are listed in Table 2. The different radiative components that
MODTRAN simulated are shown in Fig. 2(b).

The at-sensor total radiance Lλ simulated via MODTRAN consists of the ground reflected
radiance, surface self-emitted radiance, two atmospheric upwelling radiances, and two solar
upwelling radiances, represented as

EQ-TARGET;temp:intralink-;e003;116;535Lλ ¼ LM
grnd_refl þ LM

surf þ LM
path_emit þ LM

path_scat þ LM
solar_scat1 þ LM

solar_scat2; (3)

where LM
path_emit is the atmospheric LOS thermal radiance and LM

path_scat is the atmospheric thermal

radiance scattered to the LOS path. LM
solar_scat1 is the solar single scattering radiance and L

M
solar_scat2

is the solar multiple scattering radiance. The corresponding relationship between MODTRAN
simulated radiative components and those in Eq. (2) is listed in Table 3.

As shown in Table 3, the simulated at-sensor ground reflected radiance LM
grnd_refl involves

an unknown target spectra variable [i.e., rðλÞ]. Therefore, the downwelling radiance must be
separated from the MODTRAN simulated ground reflected radiance LM

grnd_refl:

Table 2 Parameters in MODTRAN simulation.

Parameters Values

Wavelength λ [7.5, 12] by every 0.0175 (μm)

Day of the year [1 to 365]

Time of the day [2, 6, 10, 14, 18, 22] (:00)

Reflectivity r ðλÞ [5, 10, 15, 30, 50, 80, 100] (%)

Elevation angle θ [30 to 90] by every 5 (deg)

Azimuth ϕ [0 to 360] by every 5 (deg)

Target temperature T 320 (K)

Shape factor F 1

Table 3 Different decomposition of Lλ.

MODTRAN RTE

LMgrnd_refl
h
Esλ cos στ1ðλÞ

π þ Ldsλ þ Ldελ
i
r ðλÞτ2ðλÞ

LMsurf εðλÞLT λτ2ðλÞ

LMsolar_scat1 þ LMsolar_scat2 Lusλ

LMpath_emit þ LMpath_scat Luελ
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EQ-TARGET;temp:intralink-;e004;116;735LM
down ¼

LM
grnd_refl

τ2ðλÞ × rðλÞ ¼
Esλ cos στ1ðλÞ

π
þ Ldsλ þ Ldελ: (4)

As mentioned above, the goal of using deep learning is to autonomously learn the attribute–
value relationships between specific targets and the parameterization of the RTE to characterize
the atmosphere under different geometric angles and time. For MODTRAN simulations, the
learning task is to estimate the atmospheric transmission τ2ðλÞ, downwelling radiance LM

down,
solar and atmospheric upwelling radiance LM

solar_scat1 þ LM
solar_scat2 and L

M
path_emit þ LM

path_scat, given

as input the at-sensor total radiance Lλ from millions of simulated data.

2.3 Deep Neural Network

The deep learning model used in this research is a convolutional neural network (CNN), which
can automatically and hierarchically extract and learn spectral features from HSI data itself with
little or no human supervision. It has been successfully applied to many hyperspectral image
analyses, such as spectral unmixing, segmentation, target detection, and classification with ML
methods in recent years.26–30

Many CNN architectures have been developed in recent years to address different spectral,
spatial, or spectral–spatial feature analysis. Charmisha et al.31 took the pixel vectors as input and
presented a vectorized CNN architecture to perform the classification of HSI data in the spectral
domain. More complex CNNs will utilize the spectral–spatial information together for a better
feature extraction. Wei et al.32 proposed a hierarchical deep framework called spectral–spatial
response to jointly learn spectral and spatial features through the template matching for land
cover analysis. Shi and Pun33 combined the spectral–spatial feature extracted by the CNN model
with a multiscale hierarchical recurrent neural network to capture the spatial relations of local
features at different scales. Mou et al.34 adopted an end-to-end recurrent convolutional neural
network with several convolutional layers at the beginning to extract spectral–spatial features for
change detection in earth observation.

However, as Signoroni et al. suggested in their review paper, most recent HSI-DL studies
exploiting CNNs include the classification as a final goal, which is highly related to the pixel
labeling or feature extraction as a classifier.35 The DL-driven RTE solution to characterize the
atmosphere and accurately quantify its radiative attenuation effects on the at-sensor received
signal is still needed.

Therefore, we propose a fundamentally different research question. While related research
focuses on direct pixel classification (or target detection), the proposed approach focuses on
characterizing the atmosphere, which is used to extract the pixel reflectivity (or emissivity) from
the total sensor radiance. The main advantage of the proposed approach is that, in theory, it can
work with any target pixel, whereas methods that use a classifier for a direct pixel classification
are generally limited to signatures that were used for training.

To fully exploit the rich spectral–spatial information obtained from multiscan hyperspectral
images and learn the complex nonlinear relationship between the observed at-sensor signal and
different radiative components that contribute to it, a low-dimensional representation of radiative
features needs to be extracted and learned via the deep neural network.

The proposed CNN has two parts: the encoder and the decoder. The encoder is a network that
compresses the input through convolutional layers into a latent space vector. It has three con-
volution blocks (conv_block) and one convolution layer (conv_layer) in which each conv_block
contains a convolution layer + a batch normalization layer + an activation layer (leaky rectified
linear unit). The function of the last convolution layer in the encoder is to convert the feature
maps into a latent space vector. The decoder network takes this latent space vector and performs
upsampling with transposed convolution operations to reconstruct the output, and it also has
three convolution blocks and one transposed convolution layer (conv_trans) in which each
conv_block contains a transposed convolution layer + a batch normalization layer + an activation
layer (rectified linear unit). The function of the last transposed convolution layer in the decoder is
to convert the feature maps into four 256 × 8 matrices. The network structure and its parameters
are illustrated in Fig. 3 and Table 4.
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Each input in this proposed CNN is the at-sensor total radiance, observed at different viewing
angles from multiscan hyperspectral images for a specific day of the year, time of the day, and
specific target, as listed in Table 2. Instead of using a vector to represent the spectral radiance at
different wavelength bands, this input is a 256 × 8 matrix as a function of both angle and wave-
length, where 256 rows represent the 256 wavelength bands between 7.5 and 12 μm and eight
columns represent for eight geometric angles.

Each input matrix has four corresponding outputs, and each output is also a 256 × 8 matrix
having the same wavelengths and geometric angles as rows and columns. The values in these
four outputs are the atmospheric transmission rate, downwelling radiance, and solar and atmos-
pheric upwelling radiance that contribute to the at-sensor total radiance, respectively.

The CNN network is trained on the NVIDIA Quadro P5000 GPU with four workers, using
PyTorch36 to learn the parameters that can map each input matrix (i.e., at-sensor total radiance) to
its four corresponding output matrices (4 × 256 × 8) by minimizing the mean square error (MSE)
as a loss function for all 299,040 input and output matrices simulated for different atmospheric
models, time of the day, day of the year, and reflectivities. The optimization function used in this
network is the adaptive moment estimation (Adam) with a learning rate 10−4 and a batch size of
128 for 10,000 epochs. The total training time on 299,040 matrices is around 60 min while the
inference time to predict four output matrices given any at-sensor total radiance matrix as input is
2 to 3 s.

The reason to choose the encoder–decoder architecture is because this model is able to
project the original input into a new space and generate compressed, extended, or even equally

Fig. 3 Autoencoder CNN structure.

Table 4 Parameters of the network structure.

Operation layer
Number of
kernels Kernel size Stride Padding

Number of
parameters

Data size
(nc × h × w )

Input data — — — — 0 1 × 256 × 8

Encoder conv_block 64 4 × 4 × 1 2 × 2 1 × 1 1088 64 × 128 × 4

conv_block 128 4 × 4 × 64 2 × 2 1 × 1 2176 128 × 64 × 2

conv_block 256 4 × 4 × 128 2 × 2 1 × 1 4352 256 × 32 × 1

conv_layer 16 32 × 1 × 256 1 × 1 0 × 0 528 16 × 1 × 1

Decoder conv_block 256 32 × 1 × 16 1 × 1 0 × 0 8192 256 × 32 × 1

conv_block 128 4 × 4 × 256 2 × 2 1 × 1 2176 128 × 64 × 2

conv_block 64 4 × 4 × 128 2 × 2 1 × 1 1088 64 × 128 × 4

conv_trans 4 4 × 4 × 64 2 × 2 1 × 1 68 4 × 256 × 8
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dimensional outputs rather than carry out classification tasks, and it perfectly fits our research
purpose.37 The comparison between deep learning estimations and the results from the
MODTRAN computations is given in Sec. 3. This leads to a measure of both accuracy and
precision using multiple scans for any given image scan prior to performing the target detection.

2.4 Target Spectra Retrieval

After the DL model is well-trained, the spectra of surface or near-surface targets can be retrieved
with predicted τ2ðλÞ, LM

down, Lusλ, and Luελ, together with the observed at-sensor total radiance
Lλ. Recalling Eq. (2) and Table 3, the remaining unknown variables are just εðλÞ, rðλÞ, and LTλ.
LTλ is also referred to as the Planck equation, which describes the radiation emitted by a
blackbody

EQ-TARGET;temp:intralink-;e005;116;590LTλ ¼ 2 hc2λ−5ðe hc
λkT − 1Þ−1; (5)

where T is the target temperature in Kelvin, h is Planck’s constant, c is the speed of light, and k is
the Boltzmann gas constant. LTλ can be calculated, assuming T is known. In addition, according
to the energy equilibrium and Kirchoff’s law, all of the incident flux can only be transmitted,
absorbed, or reflected. The absorptivity of a surface is numerically equal to its emissivity. Thus,
the reflectivity of an opaque surface has the following relationship with its emissivity:

EQ-TARGET;temp:intralink-;e006;116;497τðλÞ þ αðλÞ þ rðλÞ ¼ 1 τðλÞ ≈ 0 αðλÞ ¼ εðλÞ εðλÞ þ rðλÞ ¼ 1; (6)

where τðλÞ is the transmissivity, αðλÞ is the absorptivity, rðλÞ is the reflectivity, and εðλÞ is
the emissivity.

Substituting Eqs. (4) and (6) into Eq. (2), rðλÞ is solved as

EQ-TARGET;temp:intralink-;e007;116;430LM
downrðλÞ þ ½1 − rðλÞ�LTλ ¼

Lλ − Lusλ − Luελ

τ2ðλÞ
rðλÞ ¼ ðLλ − Lusλ − LuελÞ∕τ2ðλÞ − LTλ

LM
down − LTλ

: (7)

It is intuitive to see that the target spectral reflectivity rðλÞ now is a function of the observed
total radiance Lλ, predicted solar and atmospheric components [i.e., LM

down, τ2ðλÞ, Lusλ, Luελ], and
calculable blackbody thermal radiation LTλ, assuming a known T. Comparing this retrieved rðλÞ
with the spectral features in the database, such as the NIST or USGS spectral library, the target
material or similar materials can be identified. This DL solution only takes the observed total
radiance as input from multiscan hyperspectral images to characterize the atmosphere and
retrieve the target spectra, which can be implemented into real-time target detection unlike that
of traditional state-of-the-art approaches.

3 Results

This section first conducts an experiment to understand which geometries of multiple scans and
spectral bands are necessary for an accurate atmospheric and background characterization. After
identifying the optimal combinations of angles, azimuth, and spectra for the data simulation and
collection, millions of data are simulated via the MODTRAN. Then, the proposed autoencoder
neural network is trained to estimate solar and atmospheric components of upwelling, down-
welling, and transmission as a function of angles. Finally, the target spectral properties are
retrieved, and an error estimate is provided.

3.1 Model Parameter Configuration

The geometries to best characterize the solar and atmospheric influence are determined in two
steps. First, azimuths from 0 deg to 360 deg by every 5 deg are simulated for the LWIR spectrum
between 7.5 and 12 μm with a spectral resolution of 17.5 nm, with all other parameters listed in
Table 2 fixed, to test how MODTRAN simulated radiative components change as a function of
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azimuth and wavelength. Next, the azimuth is fixed and the elevation angles vary from 30 deg to
90 deg to research the influence of the elevation angles.

Figure 4 shows MODTRAN simulated radiance for different azimuths with a fixed elevation
angle at 30 deg at the local time of 2 pm on April 18. The target reflectivity is set as 0.1. It was
found that the azimuth only has obvious influence on the solar scattering radiance, but the atmos-
pheric and surface self-emitted thermal radiance; in addition, the ground-reflected radiance does
not vary much, assuming the target is a Lambertian surface.

Then, the solar scattering radiance at different azimuths is projected as a pie chart at the peak
of the spectrum (i.e., 8.845 μm). At 2 pm, the Sun’s azimuth is 203 deg from the north (0 deg)
and the highest value of the solar scattering radiance that the sensor receives is at 23 deg. In other
words, when the sensor is facing the Sun, the received solar scattering radiance is highest, as
shown in Fig. 5.

Another finding is that solar radiance is at least three orders of magnitudes smaller than self-
emitted thermal components for the LWIR spectrum, which means the solar contributions are

Fig. 4 Simulated radiance components at different azimuths (θ ¼ 30 deg, 2 PM).

Fig. 5 Solar radiance as a function of azimuth.
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negligible. These analyses lead to a further simplification of RTE, and the reflectitivity calcu-
lation by removing the solar components from Eqs. (2), (3), (4), and (7) as

EQ-TARGET;temp:intralink-;e008;116;449LM
down ¼ Ldελ;Lλ ¼ ½εðλÞLTλ þ LdελrðλÞ�τ2ðλÞ þ Luελ

rðλÞ ¼ ðLλ − LM
path_emit − LM

path_scatÞ∕τ2ðλÞ − LTλ

LM
down − LTλ

:
(8)

Continuing the previous experiment, Fig. 6 shows MODTRAN-simulated radiative compo-
nents with different elevation angles but a fixed azimuth at the same location and time for the
same target. It is intuitive to see the relationship between each component, and the elevation
angle is nonlinear. The upwelling thermal radiances LM

path_emit and LM
path_scat decrease when the

elevation angle increases from 30 deg to 90 deg (vertically looking up), opposite to the surface
thermal emission LM

s and ground reflected radiance LM
grnd_refl. This is because the LOS path will

go through warmer and denser air when the elevation angle is lower, resulting in a higher atmos-
pheric thermal emission and scattering. However, the transmission decreases due to a higher
atmospheric absorption caused by the warmer and denser air near the ground; therefore, the
at-sensor LM

surf and LM
grnd_refl are smaller when the elevation angle is lower.

To draw a conclusion, the azimuth and solar components do not have significant impacts
on the at-sensor total radiance for the LWIR spectrum, but the elevation angle does. It is neces-
sary to integrate the elevation angle into the proposed DL solution as a starting point to better
characterize atmosphere and retrieve the target spectra.

3.2 Atmospheric Component Learning

The proposed neural network is trained to characterize the atmosphere by estimating four atmos-
pheric radiative components at different elevation angles. Each MODTRAN simulated compo-
nent is a vector across 256 wavelength bands for a specific elevation angle, time of the day, day
of the year, and target, plotted as a single colored line in Fig. 6. For the neural network training
purpose, the downwelling radiance LM

down is first separated from the ground reflected radiance
LM
grnd_refl, as Eq. (4) suggests. Then, vectors across 256 wavelength bands at eight selected eleva-

tion angles for each component are converted to a matrix, as shown in Fig. 7.
The total number of the training matrix transformed from millions of simulated MODTRAN

data is 299,040 (i.e., 365 × 6 × 7 × 4 × 5), which represents 365 days of the year, six times of the
day, seven targets of different reflectivities under six seasonal or yearly atmospheric models

Fig. 6 Simulated radiance components at different elevation angles (ϕ ¼ 0 deg, 2 PM).
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(numerically equal to four yearly models) for five radiative components (i.e., one input and four
corresponding outputs) (i.e., Lλ, τ2, LM

down, L
M
path_emit, and LM

path_scat).
The proposed DL solution is validated using the trained neural network to identify the spec-

tral characteristics of targets that were not part of the training. Polyethylene, retrieved from the

Fig. 7 Total radiance received at the sensor.

Fig. 8 Predicted atmospheric radiative components. (a) Predicted transmission, (b) predicted
downwelling radiance, (c) predicted path thermal emission, and (d) predicted path thermal
scattering.
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NIST Chemistry WebBook as well as 21 real-world ground targets measured by a contact reflec-
tometer, is used for the validation. Its spectral reflectivities are not constant across the spectrum,
which is different from any of the targets simulated in the training dataset with constant reflec-
tivities. However, the trained DL model should be able to characterize the atmospheric param-
eters (transmission, upwelling, and downwelling) independent of the target reflectivity.

Figure 7 shows the polyethylene’s total radiance received at the sensor as input. Figures 8 and
9 are the predicted τ2, LM

down, L
M
path_emit, and LM

path_scat as well as their associated residuals via the

trained neural network, given the at-sensor total radiance of polyethylene at different angles
as input.

The downwelling radiance has a little bit larger error compared with other components
because it is separated from the ground reflected radiance before the training process.
Referring to Eq. (4), it makes sense that LM

down is more sensitive to the changes of the target
spectra, and the error of the transmission τ2 will also be directly propagated to it. However,
it is clear to see all predicted errors are one or more orders of magnitude smaller than the original
signal, which means that the trained neural network is able to characterize the atmosphere at
different angles, only given the at-sensor total radiance as input.

3.3 Target Spectra Retrieval

The target spectral reflectivity now can be solved with the observed at-sensor total radiance and
predicted atmospheric radiative components via Eq. (8). Figure 10 shows the retrieved spectral
reflectivities at different elevation angles for the polyethylene from NIST Chemistry WebBook
and the large black plastic board from 21 ground measured targets. The associated root

Fig. 9 Residuals of predicted atmospheric radiative components. (a) Residual of transmission,
(b) residual of downwelling radiance, (c) residual of path thermal emission, and (d) residual of
path thermal scattering.
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mean square errors (RMSEs) between retrieved reflectivities and their true values are also
given below.

Several observations are made from comparing the retrieved spectral reflectivities with their
true values:

1. The retrieved spectral reflectivities between 7.5 and 7.75 μm have a huge variance at
different elevation angles, but they are almost the same for the remaining spectrum.
This is due to a larger error of predicted transmission at several angles between 7.5 and
7.75 μm, as shown in Fig. 8

2. The error of retrieved reflectivities becomes larger when the original target reflectivity
has a sharp change. For example, the deviation of retrieved reflectivity of the polyethyl-
ene from its true values is much larger at around 11 μm; the same occurs for the black
plastic board at around 9.7 μm

Overall, the average RMSE of retrieved reflectivities for two real-world materials are both
below 0.02 even counting the largest error at the beginning of the LWIR spectrum. This proposed
neural network trained on the Lambertian targets with constant reflectivities across the spectrum
is thus able to accurately characterize the atmosphere and retrieve the target spectral properties
without a detailed atmospheric profile. It is also much more computationally efficient than using
a numerical solution to do atmospheric correction and target detection for each pixel in a scene.
This additional computational efficiency means that the proposed solution is particularly effec-
tive for real-time hardware implementations.

4 Conclusion

This research presents an artificial intelligence/deep learning-based solution to characterize the
atmosphere at different vantage points and to retrieve target spectral properties. The results show
that this proposed approach can (1) estimate atmospheric components of upwelling, downwel-
ling, and transmission as a function of angles, given as input the at-sensor total radiance, within
one order of magnitude errors or less when compared with MODTRAN solutions for the long-
wave infrared spectrum; (2) retrieve the target spectral properties; and (3) give an estimate of
the error for the retrieved target spectra.

In a realistic operational use, the complexities can be summarized as follows: (1) the pro-
posed deep learning solution is theoretically extendable to the full spectrum. However, the LWIR
spectrum solutions shown are simpler because the solar components and the influence of varying
azimuths are negligible compared with self-emitted thermal components and elevation angles;
(2) it might be not possible to collect all of the geometries simulated, and the effect of missing
data or interpolated data on the solution is unclear.

Fig. 10 Retrieved reflectivity at different elevation angles for (a) polyethylene and (b) black plastic
board.
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Future work will address the two identified shortcomings of extending the current research
to full spectrum and developing a computationally tractable solution to deal with missing and
incomplete data. Furthermore, a more rigorous testing of the methodology, including field
collections of upwelling, downwelling, and transmission to compare the computational solution
to a real-world scenario, is planned.
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